Safe Harbor

In the presentation that follows and in related comments by General Motors management, our use of the words "expect," "anticipate," "project, " "estimate," "forecast," "objective," "plan," "goal" and similar expressions is intended to identify forward looking statements.

While these statements represent our current judgment on what the future may hold, and we believe these judgments are reasonable, actual results may differ materially due to numerous important factors that are described in GM's most recent report on SEC Form 10-K which may be revised or supplemented in subsequent reports on SEC Forms 10-Q and 8-K. Such factors include, among others, the following: changes in economic conditions, currency exchange rates or political stability; shortages of fuel, labor strikes or work stoppages; market acceptance of the corporation's new products; significant changes in the competitive environment; changes in laws, regulations and tax rates; and, the ability of the corporation to achieve reductions in cost and employment levels to realize production efficiencies and implement capital expenditures at levels and times planned by management.

Fuel Economy Technologies Media Briefing

Presenter: Bob Kruse, Executive Director, Vehicle Integration

Date: June 29, 2004

GM Vehicle Engineering Center

Agenda

- GM fuel economy leadership in high-volume vehicles
- Fuel saving technologies for mainstream vehicles
- Comparison of high-volume 2004 vehicles in key segments
- Case study: 2005 GM Full-Size Trucks
- Q&A

GM Fuel Economy Leadership

- For mainstream vehicles that many Americans buy and drive, analysis of EPA numbers shows that GM is a fuel economy leader
 - Number one in many segments
 - Close to leader in other segments
- How we do it:
 - Result of decades of intelligent engineering and hard work by thousands of GM engineers
 - Result of many incremental, hard-earned improvements no "silver bullets"
 - Result of work that continues today and every day

GM has fuel economy leadership across more U.S. segments than any other manufacturer

Fuel economy ranking by Ward's segmentation

Note: Excludes hybrid, diesel, and alternative fuel vehicles

EPA Ranking by Ward's Segmentation								
Segment	City Leadership	City Mpg	Hwy Leadership	Hwy Mpg				
Car								
Lower Small	Toyota Echo	35	Toyota Echo	43				
Jpper Small	Honda Civic	36	Honda Civic	44				
Small Speciality	Toyota Celica	29	Mini Cooper	37				
_ower Middle	Oldsmobile Alero,	26	Oldsmobile Alero	37				
	Pontiac Grand Am		Pontiac Grand Am					
Jpper Middle	Honda Accord	26	Honda Accord	34				
Middle Speciality	Acura RSX	27	Acura RSX	34				
₋arge Regular	Chrysler Concorde,	21	Chrysler Concorde,	29				
	Dodge Intrepid,		Buick LeSabre,					
	Toyota Avalon		Nissan Maxima,					
			Pontiac Bonneville,					
			Dodge Intrepid,					
	Sech 0.2 Audi A4	22	l oyota Avaion	22				
	Saab 9-3, Audi A4,	23	5880 9-5	33				
	Acura TSY							
	Saah 9-5	21	Saah 9-5	30				
	Caub 5-5	21	BMW 5 Series	50				
Inner Luxury	Jaquar X.I BMW 7 Series		Binty o conco					
	Lexus LS 430. Mercedes S Cla	ss 18	Jaguar XJ	28				
_uxurv Speciality	Mercedes CLK	20	Pontiac GTO	29				
_uxury Sport	Audi TT. Mercedes SLK	22	BMW Z4. Porsche Boxster.	29				
-			Mercedes SLK					
Iruck								
₋arge Van	GMC Savana, Ford Econoline	15	GMC Savana,	20				
	Chevrolet Express		Chevrolet Express					
₋uxury Van	Chrysler Town & Country	20	Chrysler Town & Country,	26				
			Oldsmobile Silhouette					
Small Pickup	Ford Ranger, Mazda B Series	24	Ford Ranger, Mazda B Seri	es 29				
₋arge Pickup	GMC Sierra, Ford F Series	17	Chevy Silverado, Dodge Ra	am 21				
	Chevy Silverado		GMC Sierra					
Middle Sport/Utility Vehicle	Jeep Liberty, Nissan Xterra	19	Jeep Liberty, Nissan Xterra	24				
Middle Luxury Sport/Utility Vehicle	Buick Rainier, Olds Bravada	16	Buick Rainier, Olds Brava	i da 21				
_arge Sport/Utility Vehicle	Chevy Tahoe, GMC Yukon,	16	Dodge Durango	21				
	Dodge Durango							
_arge Luxury Sport/Utility Vehicle	Cadillac Escalade	14	Lincoln Navigator,	18				
			Cadillac Escalade					
Small Van	Dodge Caravan	20	Toyota Sienna	27				
Small Cross/Utility Vehicle	Toyota Rav4	24	Toyota Rav4	30				
Middle Cross/Utility Vehicle	Saturn Vue	24	Saturn Vue, Honda CRV	29				
Middle Luxury Cross/Utility Vehicle	Lexus RX 330	20	Lexus RX 330	26				
Small sport/Utility Vehicle	Chevy Tracker, Suzuki Vitara	19	Chevy Tracker, Suzuki Vita	ra 22				

Examples of Fuel-Saving Vehicle Technologies

- Vehicle mass reduction through design and premium materials
- Low-drag brake calipers
- Lower-rolling resistance tires
- LED brake lights
- High efficiency alternators
- Mechanical returnless fuel system with variable speed fuel pump

Examples of Fuel-Saving Powertrain Technologies

- Mass reduction
 - Lightweight materials and composites
- Air exchange loss
 - Variable valve timing
- Friction/parasitic loss reduction
 - Roller lifters and roller rocker arms
 - Electric power steering (EPS)
- Thermal efficiency enhancements
 - Higher compression ratio
 - Enhanced spark control
- 5-speed automatic and 6-speed manual transmissions

Integration of Technologies

- Technology benefits vary depending on application
 - Appropriate balance between fuel economy, performance, safety and other integration areas (e.g. noise, vibration)
- Not all technologies can be applied to all vehicles
 - Some vehicles have high payload and towing requirements which may limit technology applications
- Technologies are not necessarily additive
 - 1% fuel economy improvement plus 1% fuel economy improvement does not necessarily equal 2% fuel economy improvement

Case Studies: Mainstream Vehicles

- Examples mid-size cars, premium crossover SUVs, full-size pickups, full-size SUVs
- Mainstream vehicles that millions of motorists drive every day for work, personal use and family vacations
- Configured the way most customers buy them, i.e. automatic transmissions
- We encourage media and consumers to do their own side-by-side comparisons on the EPA site (www.fueleconomy.gov)

Families on a Budget: Mid-Size Cars with I-4 and Automatic Trans

Vehicle	Chevy Malibu	Toyota Camry	Honda Accord	Nissan Altima
Engine	2.2L I-4	2.4L I-4	2.4L I-4	2.5L I-4
Trans.	4-sp. auto	4-sp. auto	5-sp. auto	4-sp. auto
City MPG	24	23	24	23
Highway MPG	34	32	34	29

Fuel Economy Perception versus Reality

Source:

U.S. EPA 2004 Fuel Economy Guide, 2003; Allison-Fisher Barometer of Awareness & Imagery, December 2003

Faster Families:

Mid-Size Cars with V-6 and Automatic Trans

Vehicle	Chevy Malibu	Chevy Malibu Maxx*	Toyota Camry	Honda Accord	Nissan Altima
Engine	3.5L V-6	3.5L V-6	3.0L V-6	3.0L V-6	3.5L V-6
Trans.	4-sp. auto	4-sp. auto	5-sp. auto	5-sp. auto	4-sp. auto
City MPG	23	22	21	21	19
Highway MPG	32	30	29	30	26

* EPA rates Malibu Maxx as a Large sedan

SUVs with Class: Premium Crossover Utilities with 4WD

Vehicle	Buick Rendezvous	Acura MDX	Lexus RS330	Chrysler Pacifica	
Engine	3.4L V-6	3.5L V-6 (premium fuel)	3.3L V-6	3.5L V-6	
Trans.	4-sp. auto	5-sp. auto	5-sp. auto	4-sp. auto	
City MPG	18	17	18	17	
Highway MPG	24	23	24	22	

Family Haulers: Full-Size SUVs with Base V-8 and 2WD

Vehicle	Chevy Tahoe 1500	Ford Expedition	Nissan Pathfinder Armada	Toyota Sequoia	Dodge Durango
Engine	4.8L V-8	4.6L V-8	5.6L V-8	4.7L V-8	4.7L V-8
Trans.	4-sp. auto	4-sp. auto	5-sp. auto	4-sp. auto	5-sp. auto
City MPG	16	15	13	14	14
Highway MPG	19	19	19	18	19

America's Workhorse:

Full-Size Pickups with Base V-8 and 2WD

Vehicle	Chevy Silverado 1500	Ford F150	Nissan Titan	Toyota Tundra	Dodge Ram 1500
Engine	4.8L V-8	4.6L V-8	5.6L V-8	4.7L V-8	4.7L V-8
Trans.	4-sp. auto	4-sp. auto	5-sp. auto	4-sp. auto	5-sp. auto
City MPG	17	15	14	14	14
Highway MPG	20	19	19	19	18

Case Study: 2005 Full-Size Trucks

- Continuous fuel economy improvement in North America's highest volume platform
 - About 1.7 million total units produced per year
 - About 1.3 million light-duty units produced
- Changes across platform SUVs and Pickups
- Four components in the 2005 initiative:
 - Electric cooling fans
 - Regulated voltage control
 - Aerodynamics
 - Base axle ratio changes

2004 Mechanical Cooling Fan

2005 Electric Cooling Fans

Regulated Voltage Control (RVC)

- GM holds one patent on RVC technology, with two additional patents pending
- Monitors state of charge on batteries and controls the generator to minimize parasitic loss
- Method and system for regulating charge voltage to the battery, improving fuel economy and increasing battery life

- Improved front-end sealing:
 - Tow hook seals
 - Seal openings when tow hooks deleted
 - Seal openings when fog lamps deleted
 - Improved park/turn lamp to bumper filler (Chevrolet Silverado)
 - Seal center hole in front air deflector (GMC SUV)
- Added extension (air dam) to front air deflector
- Improved running board aerodynamics (SUV)
- Redesigned roof-mounted CHMSL (SUV)

Chevy Silverado 4WD

GMC Yukon 2WD

GMC Yukon 2WD

<u>GM</u>

Base Axle Ratio Changes

	9000	9500	10000	10500	11000	11500	12000	12500	13000	13500	14000
4.3L V-6	3.08	3.23 3.42	3.73								
2WD 4.8L V-8			3.23		3.42		3.73				
4WD 4.8L V-8					3.42		3.73		4.10		
2WD 5.3L V-8							3.23 3.42		3.73		
2WD 5.3L V-8 C15906/36									3.42 3.73		4.10
4WD 5.3L V-8									3.42 3.73		4.10

Denotes 2005 base axle

Denotes 2004 base axle

Denotes optional axle

Typical Fuel Economy Improvement

- + 0.20 mpg electric cooling fans
- + 0.20 mpg regulated voltage control
- + 0.25 mpg aerodynamics
- + 0.10 mpg base axle ratio changes
- + 0.75 mpg preliminary projections
- + 1 mpg typical fuel economy improvement in City and Highway label values across the light-duty, full-size truck portfolio after development, refinement and validation

SUV City / Highway Fuel Economy Comparison

<u>GM</u>

Pickup City / Highway Fuel Economy Comparison

<u>GM</u>

Net Result of 2005 Fuel Economy Average Gain

- 1 mpg typical improvement across the GM light-duty, full-size truck platform
- About 1.3 million units will be produced in 2005
- 15,000 average miles driven per year
- Annual fuel savings of about 28 million gallons
- Equivalent to about 1.4 million barrels of crude oil, or the capacity of a large supertanker

Summary

- GM vehicles are clear leaders in a number of mainstream vehicle segments, and are competitive in others
- Intelligent application of technology results in customers able to buy vehicles they need with good fuel economy
 - Customer choice is still an important factor
- While working on future technologies, GM continues to improve the fuel economy of today's mainstream vehicles
- The savings are significant
 - 1 mpg typical improvement in full-size truck platform for 2005 has potential to save about 28 million gallons of gasoline per year
 - Equivalent to about 1.4 million barrels of crude oil, or the capacity of a large supertanker

