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PRECLINICAL STUDY

Haptoglobin Genotype Determines
Myocardial Infarct Size in Diabetic Mice

Shany Blum, MD, MSC,* Roy Asaf,* Julia Guetta, PHD,* Rachel Miller-Lotan, PHD,*
Rabea Asleh, MSC,* Ran Kremer, MD,* Nina S. Levy, PHD,* Franklin G. Berger, MD, PHD,†
Doron Aronson, MD,‡ Xiaoming Fu, PHD,§ Renliang Zhang, PHD,§ Stanley L. Hazen, MD, PHD,§
Andrew P. Levy, MD, PHD, FACC*

Haifa, Israel; Columbia, South Carolina; and Cleveland, Ohio

Objectives We sought to understand the importance of oxidative stress in explaining why the haptoglobin (Hp) genotype
determines myocardial infarction (MI) size in diabetes mellitus (DM).

Background Two common alleles (1 and 2) exist at the Hp locus in humans. The Hp 2 allele is associated with increased MI
size in individuals with DM. In vitro, the Hp 2 protein is associated with increased generation of oxidatively active
iron, whereas the Hp 1 protein is associated with increased production of the antioxidant cytokine interleukin
(IL)-10.

Methods Myocardial infarction was produced by myocardial ischemia-reperfusion (IR) in DM C57BL/6 mice carrying the
Hp 1 or Hp 2 allele. Myocardial oxidative stress after IR was assessed using electrospray ionization mass spec-
trometry. Redox active iron and IL-10 were measured in the serum after IR.

Results Myocardial infarction size was significantly larger in Hp 2 mice as compared with Hp 1 mice (44.3 � 9.3% vs.
21.0 � 4.0%, p � 0.03), and these larger infarctions were associated with a significant increase in a panel of
hydroxyl-eicosatetraenoic acids. Redox active iron was greater in Hp 2 mice (0.45 � 0.11 �mol/l vs. 0.14 �

0.05 �mol/l, p � 0.02), whereas IL-10 was greater in Hp 1 mice (85.8 � 12.9 pg/�l vs. 46.7 � 10.8 pg/�l,
p � 0.04) after IR. Administration of an antioxidant (BXT-51072) to Hp 2 mice reduced myocardial injury after
IR by more than 80% (p � 0.003), but no myocardial protection was provided by the antioxidant to Hp 1 mice.

Conclusions The increased MI size in DM Hp 2 mice occurring after IR may be due to increased oxidative stress. (J Am Coll
Cardiol 2007;49:82–7) © 2007 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2006.08.044
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schemia-reperfusion (IR) plays an important role in deter-
ining the amount of myocardial injury occurring in acute

oronary syndromes (1). Ischemia-reperfusion injury is in-
reased in diabetes mellitus (DM) because of increased
xidative stress (2) and an exaggerated inflammatory reac-
ion (3). Functional polymorphisms in genes that modulate
xidative stress and the inflammatory response may there-
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ore be of heightened importance in determining infarct size
n DM.

The haptoglobin (Hp) gene locus at chromosome 16q22
s polymorphic with 2 common classes of alleles denoted 1
nd 2 (4). We have reported that DM individuals with the
p 2 allele have significantly larger myocardial infarctions

MIs) than DM individuals homozygous for the 1 allele (5).
e have proposed that this may be due to differences in the

ntioxidant and anti-inflammatory properties of the Hp 1
nd Hp 2 proteins (6–11). To test this hypothesis, we
ssessed a variety of oxidative and inflammatory parameters
ccurring after IR in DM mice genetically modified at the
p locus. Moreover, we have directly tested the importance

f oxidative stress in mediating myocardial injury in these
ice with oral administration of an antioxidant.

aterials and Methods

nimals. The protocols used in these studies were ap-

roved by the Technion Faculty of Medicine Animal Care
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nd Use Committee. Wild-type C57BL/6 mice carry only a
lass 1 Hp allele highly homologous to the human Hp 1
llele and are referred to as Hp 1 mice (12). The Hp 2 allele
xists only in humans (4). Mice containing the Hp 2 allele
ere generated by introducing the human Hp 2 allele as a

ransgene in a C57BL/6 Hp knockout genetic background
13–15).

iabetes. Diabetes was induced by an intraperitoneal in-
ection of 200 mg/kg streptozotocin in 3-month-old mice.
he severity of diabetes was defined both by spot non-fasting
lucose (glucometer) and hemoglobin (Hb)A1c (Helena Di-
gnostics, Netanya, Israel). Myocardial infarction was pro-
uced approximately 1 month after injection of streptozotocin.

yocardial IR model. We used a modification of a pre-
iously described IR model (16). Mice were anesthetized
ith a mixture of ketamine (150 mg/kg) and xylazine (9
g/kg) and body temperature was maintained at 37°C using
heating pad. The trachea was intubated with a 21-G

eedle that was previously decapitated and had a blunt end.
he tube was connected to a respirator (Model 687,
arvard Apparatus, Halliston, Massachusetts). The respi-

ator tidal volume was 1.2 ml/min and the rate was 100
trokes/min. A left lateral thoracotomy was made in the
ourth intercostal space; the skin, muscles, and ribs were
etracted; and the pericardial sac was removed. Ligation of
he left anterior descending coronary artery (LAD) was
ade using a 7/0 Ethicon virgin silk, non-absorbable suture,

onnected to a micropoint reverse-cutting 8-mm needle
nder vision with a stereoscopic zoom microscope
SMZ800, Nikon USA, Melville, New York). The LAD
igation was performed using an easily opened knot set on a
E50 silicon tube lying over the LAD. A total of 150 IU of
eparin was injected intraperitoneally upon ligation to
revent microthrombosis. The ligation was released after 45
in followed by 1 h of reperfusion.
etermination of MI size. In those mice undergoing IR

n which we sought to measure myocardial infarct size, 15
in before the end of the reperfusion interval, 0.5 cc of
0.2% solution of propidium iodide (Sigma, Rehovot,

srael) was injected intraperitoneally. (Propidium iodide
tains the nuclei of dead cells red when injected in vivo
nd, as discussed later, was used in this model to indicate
nfarcted myocardium.) At the end of the reperfusion
nterval, the LAD was re-occluded and a 4% solution of
hioflavin-S (Sigma) was injected into the ascending

orta. (Thioflavin stains endothelial cells blue when
njected in vivo and was used in this model to indicate

yocardium that was not at risk of MI upon LAD
igation.) The mice were then sacrificed and the left
entricle (LV) cryopreserved with liquid nitrogen-cooled
ethylbutane.
The LV was cut into 15-�m-thick cryosections, and

very 20th section was photographed using an inverted
uorescent Zeiss microscope, connected to a digital camera
nd a computer with quantitative ImagePro software (Silver

pring, Maryland) (a total of 12 sections for each heart). p
he area at risk of MI upon
AD ligation was defined and
easured as thioflavin negative

i.e., the non-blue stained area).
he infarct area was defined as
ropidium positive regions (i.e.,
eep red).
Quantitation of infarct size

nd risk area was performed us-
ng an infarct analysis program
ith Matlab software, using pixel

olor coordinates (color inten-
ity) for automated calculation of
he ratios: infarct area/risk area
IA/RA), infarct area/left ventri-
le (IA/LV), risk area/left ventri-
le (RA/LV). All quantitation
as performed by a single reader
lind to the Hp genotype of the preparations.

easurement of lipid peroxidation products of arachi-
onic acid in myocardial tissue. Lipid peroxidation prod-
cts in myocardial tissue were measured both in mice
ompleting the IR procedure as well as in uninstrumented
ice. Hearts were rinsed 5 times in phosphate buffered

aline containing antioxidant (0.1 mmol/l butylated hy-
roxytoluene) and metal chelator (2 mmol/l diethylenetri-
minepentaacetic acid), transferred to screw-capped tubes
ontaining butylated hydroxytoluene and diethylenetri-
minepentaacetic acid, covered with argon atmosphere, and
hen snap frozen in liquid nitrogen and stored at �70°C
ntil analysis.
Lipid extraction of the hearts was performed under either

rgon or nitrogen atmosphere as previously described (17).
ultiple distinct oxidation products of arachidonic acid and

inolenic acid were analyzed by reverse-phase high-
erformance liquid chromatography with online electro-
pray ionization tandem mass spectrometry (17).

easurement of redox active iron (LPI). Heparinized
lasma was collected from mice at the end of the IR interval
nd was stored at �70°C until assayed. Labile plasma iron
LPI) was measured as previously described using dihydro-
hodamine, a sensitive fluorescent indicator of oxidative
ctivity (18).

easurement of interleukin (IL)-10 in mice after
R. Serum was collected at the end of the IR interval.

yocardial IL-10 was also measured in the myocardium of
R or control mice. Myocardial tissue was homogenized in
hosphate-buffered saline with 1% triton and a protease
nhibitor cocktail (Sigma Product #8340) and centrifuged at
40,000 g for 20 min, and IL-10 was measured in the
upernatant. An enzyme-linked immunosorbent assay was
sed to measure IL-10 (BioLegent, Tel Aviv, Israel).
ral administration of an antioxidant. BXT-51072

19,20), a small molecular weight, orally bioavailable, cata-
ytic mimic of glutathione peroxidase with potent lipid

Abbreviations
and Acronyms

DM � diabetes mellitus

Hb � hemoglobin

Hp � haptoglobin

IA � infarct area

IL � interleukin

IR � ischemia-reperfusion

LAD � left anterior
descending coronary artery

LPI � labile plasma iron

LV � left ventricle/
ventricular

MI � myocardial infarction

RA � risk area
eroxidase activity, was obtained f
rom Haptoguard (Fort
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ee, New Jersey). BXT-51072 was prepared as a suspension
n water at 1 mg/ml and was given by gastric lavage at a dose
f 5 mg/kg (approximately 100 �l) 30 to 40 min before
AD ligation.
tatistical analysis. Groups were compared for the mea-
ured parameters using the Student t test. All p values are
-sided, and a p value of �0.05 was considered statistically
ignificant. A Bonferroni adjustment was made for multiple
omparisons.

esults

xperimental protocol flow chart. The hearts and
lasma from mice completing the IR protocol were
nalyzed for several parameters: MI size, lipid peroxida-
ion products of arachadonic acid, redox active iron, and
ytokines. All of these parameters could not be measured
n the same heart/plasma from a given mouse because of
ifferences in the way the heart/plasma needed to be
repared and the amount of material needed in order to
easure these parameters. The flow chart in Figure 1

Figure 1 Flow Diagram of Mice Completing the IR Protocol Use

Fifty-four haptoglobin (Hp) 1 diabetes mellitus (DM) mice and 46 Hp 2 DM mice co
were used for measuring infarct size, cytokines, labile plasma iron (LPI), and lipid
BXT-treated mice received BXT before undergoing the IR protocol and non-BXT trea
for each measurement is shown. In addition to the mice shown in the figure, lipid
IR protocol. IL � interleukin.

aseline Characteristics of Mice Used to Determine Infarction Size

Table 1 Baseline Characteristics of Mice Used to Determine In

Hp Genotype n
Weight

(g)
Ag

(mon

Hp 1 8 22.0 � 1.30 4.3 �

Hp 2 7 22.8 � 0.70 4.2 �
ll data are presented as the average � SEM. Hemolglobin (Hb) A1c is expressed as the percentage of t
DM � diabetes mellitus; Hp � haptoglobin.
rovides the number of Hp 1 and Hp 2 mice completing
he IR protocol used in the measurement of each param-
ter. The size of the study groups used for all analyses was
redetermined on the basis of anticipated differences
etween the groups as well as the known variation of each
easurement. Mice were specifically set aside for gath-

ring data for a given parameter. There was no difference
n mortality between Hp 1 and Hp 2 mice undergoing the
R protocol.

I size is increased in Hp 2 mice. We compared MI size
n 7 Hp 2 DM mice and 8 Hp 1 DM mice subjected to
R. There were no significant differences in the age,
uration of DM, or glucose or HbA1c levels between
hese Hp 1 and Hp 2 DM mice (Table 1). Furthermore,
here was no significant difference in the area at risk of

I between these Hp 1 and Hp 2 mice (Table 2). However,
here was a statistically significant increase in infarct size
IA/RA) in Hp 2 mice compared with Hp 1 mice (44.3 �
.3% vs. 21.0 � 4.0%, n � 7 Hp 2 and n � 8 Hp 1 mice, p

0.03) (Table 2).

This Study

ing the ischemia-reperfusion (IR) protocol as described in the Methods section
dation. Infarct size was measured both in mice that did and did not receive BXT.
ce underwent the IR protocol but did not receive BXT. The number of mice used
dation was also measured in 5 Hp 1 and 5 Hp 2 mice that did not undergo the

ion Size

DM Duration
(days)

Glucose
(mg/dl)

HbA1c
(%)

40.1 � 1.5 417 � 45 13.1 � 0.8

34.0 � 3.6 388 � 62 13.6 � 0.6
d in

mplet
peroxi
ted mi
peroxi
farct

e
ths)

0.30

0.10
otal Hb.
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arked increase in lipid peroxidation in the myocardium
f Hp 2 mice after IR. We measured a panel of lipid
eroxidation products in the myocardium of non-

nstrumented (mice which were not subjected to the IR
rotocol) and IR treated DM Hp 1 and DM Hp 2 mice.

e found no significant difference in lipid peroxidation
roducts in DM Hp 1 (n � 5) and DM Hp 2 (n � 5)
on-instrumented mice. However, after IR we found a
ighly significant increase in lipid peroxidation products in
he myocardium of DM Hp 2 (n � 9) mice but not in DM

p 1 (n � 9) mice (Table 3).
edox active iron (LPI) is increased in diabetic Hp 2
ice after IR. We measured the amount of redox-active
PI after IR in Hp 1 and Hp 2 DM mice. We found that
PI was significantly elevated in Hp 2 mice as compared
ith Hp 1 mice (0.45 � 0.11 �mol/l vs. 0.14 � 0.05
mol/l, n � 9, p � 0.02). We have previously demonstrated

hat LPI in non-instrumented Hp 1 and Hp 2 DM mice is
arkedly �0.1 �mol/l (9).

L-10 is markedly increased in Hp 1 mice after IR. We
ound significantly higher serum levels of IL-10 in Hp 1
ice after IR as compared with Hp 2 mice after IR (85.8 �

2.9 pg/�l vs. 46.7 � 10.8 pg/�l, n � 8 Hp 1 and n � 7
p 2 mice, p � 0.04). There was no difference in IL-10

evels measured in myocardial homogenates of Hp 1 and
p 2 mice subjected to IR (7.6 � 1.1 pg IL-10/mg protein

s. 7.4 � 0.8 pg IL-10/mg protein, n � 4 Hp 1 and n � 7
p 2 mice).
eduction in MI size with the glutathione peroxidase
imic BXT-51072 in Hp2 mice but not in Hp 1 mice.
e assessed the effect of the glutathione peroxidase mimic

XT-51072 (19,20) given by gastric lavage to Hp 1 or Hp 2
ice before IR. We found that BXT-51072 reduced MI

ize (IA/RA) in Hp 2 mice by more than 80% (44.3 � 9.3%
s. 7.0 � 3.1%, n � 7 for the non-BXT and BXT groups,
� 0.003). However, in Hp 1 mice, BXT did not reduce

uantitation of Infarct Size in Hp 1 and Hp 2 Mice

Table 2 Quantitation of Infarct Size in Hp 1 and Hp 2 Mice

Hp Genotype IA/RA (%) IA/LV (%) RA/LV (%)

Hp 1 (n � 8) 21.0 � 4.0 16.0 � 3.5 74.2 � 6.7

Hp 2 (n � 7) 44.3 � 9.3* 27.0 � 3.3† 70.2 � 9.0

ll data are presented as mean � SEM. *p � 0.03 and †p � 0.04 comparing Hp 1 and Hp 2 mice.
Hp � haptoglobin; IA � area of myocardial infarction; LV � total left ventricular area; RA � area

t risk of myocardial infraction with left anterior descending coronary artery occlusion.

yocardial Lipid Peroxidation Products of Arachidonic Acid in Hp 1

Table 3 Myocardial Lipid Peroxidation Products of Arachidonic

Hp PGF2� 5-HETE 8-HETE

Hp 1 0.62 � 0.09 0.32 � 0.02 0.22 � 0.01

Hp 2 0.65 � 0.05 0.35 � 0.06 0.22 � 0.01

Hp 1 (IR) 0.84 � 0.07 0.41 � 0.07 0.25 � 0.05

Hp 2 (IR) 0.71 � 0.20 0.39 � 0.08 0.30 � 0.03*

ll data are expressed as mean � SEM in mmol/mol of the ratio of the lipid peroxidation product t

n � 9 for each genotype). *p � 0.05 (after adjustment for multiple comparisons) comparing Hp 2 (IR) m

HETE � hydroxy-eicosatetraenoic acid; Hp � haptoglobin; IR � ischemia-reperfusion; PGF2 � prostagl
I size (21.0 � 4.0% vs. 29.9 � 6.5%, n � 8 for non-BXT
nd n � 16 for BXT group, p � 0.25).

iscussion

n this study, we have demonstrated in a transgenic model
hat the amount of myocardial injury after IR is Hp
enotype dependent. We have presented data supporting
he hypothesis that this relationship between infarction size
nd Hp genotype is due to differences in the antioxidant and
nti-inflammatory functions of the Hp 1 and Hp 2 allelic
rotein products. In Hp 2 mice, we have demonstrated an
ncreased production of several lipid peroxidation products
n the myocardium after IR. On the other hand, in Hp 1

ice, we have demonstrated an increased production of the
nti-inflammatory and anti-oxidant cytokine IL-10 after IR.

Hemoglobin is a potent oxidant that is released from red
ells because of hemolysis in the setting of IR and MI (21).

e have proposed that the anti-oxidant and anti-
nflammatory functions of Hp may be attributed to its
nteraction with Hb. We and others have demonstrated in
itro that the binding of Hp to Hb retards the ability of Hb
o mediate lipid peroxidation and promotes the clearance of

b via the monocyte/macrophage CD163 scavenging re-
eptor (6–9). Furthermore, the binding of the Hp-Hb
omplex to CD163 promotes the release of anti-
nflammatory cytokines (10,11). In vitro, in tissue culture,
e have demonstrated that the Hp 1 protein is superior to

he Hp 2 protein in these anti-oxidant and anti-
nflammatory functions (6–11). The data presented herein,
howing increased lipid peroxidation and increased redox-
ctive iron in Hp 2 mice and increased IL-10 in Hp 1 mice,
rovide an in vivo validation of these in vitro observations.
We have demonstrated the importance of oxidative stress

n the development of myocardial injury in Hp 2 mice after
R by showing that pharmacologic administration of an
ntioxidant dramatically reduces MI size in this model. We
ave not demonstrated that the antioxidant used in this
tudy is superior to any other antioxidant that might have
een given. However, the choice of supplementing the Hp 2
ice with a glutathione peroxidase mimic to test this
ypothesis was not completely arbitrary. Glutathione per-
xidase, an important defense mechanism against myocar-
ial ischemia-reperfusion injury (22,23), is markedly de-
reased in the setting of DM (24 –26). Moreover,

Hp 2 Mice With and Without IR

in Hp 1 and Hp 2 Mice With and Without IR

9-HETE 11-HETE 12-HETE 15-HETE

32 � 0.02 0.29 � 0.01 1.41 � 0.23 1.77 � 0.16

32 � 0.02 0.28 � 0.01 1.12 � 0.48 1.76 � 0.17

37 � 0.09 0.32 � 0.07 2.23 � 0.88 1.93 � 0.34

42 � 0.06* 0.37 � 0.04* 2.85 � 1.20* 2.21 � 0.31*

idonic acid in the myocardium of non-instrumented (n � 5 for each genotype) and IR-treated mice
and

Acid

0.

0.

0.

0.

o arach

ice to Hp 2 non-instrumented mice.

andin F2.
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lutathione peroxidase is the primary mechanism used by
he red blood cell to protect its membrane from lipid
eroxidation by the extraordinarily high Hb concentrations
ound within the red cell (27–29). In vitro and in vivo
tudies with BXT-51072 have shown that it is capable of
rotecting cells against reactive oxygen species, catabolizing

ipid peroxides, and inhibiting inflammation presumably via
ts actions as a potent inhibitor of nuclear factor kappa beta
NF-KB) activation (19,20).

We did not anticipate that BXT-51072 would fail to
revent myocardial injury in Hp 1 mice, as overexpression of
lutathione peroxidase has been demonstrated to decrease
yocardial injury after IR in Hp 1 mice (22,23). This discrep-

ncy may reflect differences in the levels of glutathione perox-
dase activity in BXT-supplemented mice and glutathione
eroxidase transgenic mice. One explanation for the failure of
XT to provide benefit to Hp 1 mice may be its ability to

nhibit the induction of the myocardial protectant IL-10
ormally induced in Hp 1 mice with IR (30). This blunting of
he induction of IL-10 by BXT may be mediated by an
nhibition of NF-KB activation (30,31). The use of antioxi-
ants for the treatment of cardiovascular disease has fallen out
f favor owing to the demonstration of a lack of benefit and
ossible harm associated with their administration (32,33).
ne hypothesis that has been put forth for the failure of these

ntioxidant trials to show benefit is that patient selection was
ot sufficiently selective. It has been proposed that antioxidant
herapy may provide benefit only to a select population with
arkedly increased oxidative stress (34). Such a paradigm has

een demonstrated in hemodialysis patients (35). The phar-
acogenetic result presented here, wherein antioxidant therapy
ith BXT provided benefit to Hp 2 mice but not to Hp 1
ice, is consistent with this hypothesis. This result is all the
ore intriguing in light of our recent report that antioxidant

herapy in the HOPE (Heart Outcomes Prevention Evalua-
ion) study provided significant cardiovascular benefit to DM

p 2-2 (homozygous for 2 allele) but not to DM individuals
ith the Hp 2-1 or Hp 1-1 genotypes (36).
This study has several limitations. First, although overall

he total number of mice used was consistent with other
ransgenic studies using the IR model, a few of the mea-
urements in this study relied on a small number of mice.
econd, the Hp 2 allele does not normally exist in mice and
ay have resulted in physiologic changes that we have not
easured. Third, it is not possible to know whether the

ssociations that we have observed are specific to DM
ecause we have not studied the described associations in
hese mice in the absence of DM. Finally, we have not
irectly demonstrated that the protective effects of BXT-
1072 were mediated by its antioxidant action or by some
ther unknown mechanism.

eprint requests and correspondence: Dr. Andrew P. Levy,
appaport Faculty of Medicine, Technion-Israel Institute of

echnology, Haifa, Israel. E-mail: alevy@tx.technion.ac.il.
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