Today’s presentation contains forward-looking statements. All statements made that are not historical facts are subject to a number of risks and uncertainties, and actual results may differ materially. Please refer to our most recent Earnings Release and our most recent Form 10-Q or 10-K filing for more information on the risk factors that could cause actual results to differ.
Key Messages

- Making the investments to sustain the pace of innovation the market demands
- Intel’s Tick-Tock model delivers substantial leads in both silicon manufacturing and microarchitecture
- 65nm Intel® Core™ processor family delivers performance and energy efficiency leadership
- 45nm Penryn products widen the competitive gap
- Nehalem extends the lead beginning in 2H’08
A Look Back

2006 Strategy

1. Regain and sustain technology leadership
 - Drive 65nm ramp as fast as possible
 - Launch and Ramp Intel® Core™ microarchitecture products in all segments
 - Shift chipsets to 300mm, 90nm factories
 - Ramp platforms for Digital Home, Mobility, Enterprise
 - Centrino® Duo Shipping 4th Gen NOW
 - vPro™ $1B in Cumulative Revenue This Qtr*
 - Viiv™ $1B in Cumulative Revenue This Qtr*
 - Regain MSS

2. Add equivalent focus to efficiency/costs

* Intel Forecast
Intel Server Momentum with Intel® Core™ Microarchitecture

Intel Server Unit MSS Trend

Dual-Core Opteron® Launch

Quad-Core Intel® Xeon® processor Launch

Intel® Core™ Microarchitecture Launch

3 Quarters of MSS Gains

Source: Mercury Research report, April 2007

*Other names and brands may be claimed as the property of others.
Quad-Core Microprocessor Ramp

On-track for >1Mu

Cumulative Volume

Oct '06 Nov '06 Dec '06 Jan '07 Feb '07 Mar '07 Apr '07 May '07 Jun '07

Source: Intel shipment and forecast data as of May 5, 2007, subject to change without notice
"Tock" - Intel® Core™ Microarchitecture Leadership in Servers – Today
Quad-Core Intel® Xeon® processor X5355 based platforms

Data Source: Published/Submitted results as of 5/28/07. Best available Dual-Core AMD Opteron® results used as baseline.

TPC-C: 72%
Integer: 82%
Java: 132%
Java Linpack: 227%

Relative Performance: Higher is better.

Intel® Xeon® processor X5355 based platforms offer leadership in servers today, as demonstrated by superior performance across various benchmarks compared to Dual-Core AMD Opteron® processors. The chart illustrates the relative performance of these platforms, with the top 500 Linpack benchmark showing a significant improvement of 227% over baseline.
“Tock” Intel® Core™ Microarchitecture: Leadership SPECint*_rate2006 – Today

Dual-Core
- Dual-Core Opt 2222SE: 56.6
- Dual-Core Xeon® 5160: 55.2
- Dual-Core Xeon® 5160: 64.9

Quad-Core
- Quad-Core Opt 2.6GHz: ~102
- Quad-Core Xeon X5355: 84.8
- Quad-Core Xeon X5355: 99.9
- Quad-Core Xeon X5365: 106

AMD WSJ Ad Claim
AMD SPECint_rate2006 Claim

Based on published results used in AMD WSJ Ad claim. For AMD QC estimated at 20% above 4/16/2007 Intel results posted at spec.org as referenced in AMD claim. Today’s Intel results based on results submitted to spec.org as of 5/28/2007. Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit http://www.intel.com/performance/resources/limits.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104. Copyright © 2006-2007, Intel Corporation.

* Other names and brands may be claimed as the property of others.
Winning in Key Segments

Internet Portal Data Centers
- High growth segment (20%+ CAGR)
- Focus area for industry innovation
- Collaboration: HW and SW optimizations

Financial Services
- IT often a competitive differentiator
- Limited space → Energy efficiency is key
- Broad & unique account engagement

~9X Reduction In Power Per Core

110 Watts/Quad Xeon 5320
12.5 Watts/Core

>3X performance improvement

Relative Performance

<table>
<thead>
<tr>
<th></th>
<th>AMD</th>
<th>Black-Scholes Φ</th>
<th>Monte Carlo Ψ</th>
<th>SunGuard ACR*Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>89%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intel Xeon 5300 vs. AMD Opteron® Best Published

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit http://www.intel.com/performancelimits.htm or call (U.S.) 1-800-628-8886 or 1-916-356-3104. Copyright © 2006-2007, Intel Corporation. * Other names and brands may be claimed as the property of others. Xeon X5355 = Quad-Core Intel Xeon® Processor X5355; © Dual-Core AMD Opteron® Model 2322SE (2.80 GHz); © Dual-Core AMD Opteron® Model 3360 (3.00 GHz). @ Source: Intel Xeon 3.6 vs. Quad-core Xeon 5360 (96GB, 10x2000GB+ using BEA® Oracle® J2VM Version 5.0 Build P27.
Next In MP Servers –
Intel® Xeon® processor 7300 Series

Continued performance leadership

Intel® Core™ Microarchitecture

50W SKUs for Blades

Up to 2X memory capacity\(^1\)

OEM production volumes in Q3’07\(^2\)

\(^1\) Over previous generation \(^2\)Intel Forecast
Industry’s 1st 45 nm High-K Process Technology

~2x Improvement In Transistor Density

>20% Improvement In Transistor Switching Speed

~30% Reduction In Transistor Switching Power

Enables New Features, Higher Performance, Greater Energy Efficiency

"The implementation of high-k and metal materials marks the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s."

— Gordon Moore, Intel Co-Founder
CPU Shipments (65nm vs. 45nm)

45nm Factory Network
- D1D Oregon - 2H '07
- Fab 28 Israel - 1H '08
- Fab 32 Arizona - 2H '07
- Fab 11X New Mexico - 2H '08

Source: Intel

All product information and dates are preliminary and subject to change without notice.
Die Size Matters

High-Performance Quad-Core Processors in Manufacturable Dual-Die Implementation

AMD Barcelona
65nm
463m Transistors
4 MB Cache

Intel® Xeon® (Clovertown)
65nm
681m Transistors
8 MB Cache

Penryn Quad Core Server
45nm Hi-k
820m Transistors
12 MB Cache

Source: Electronics Design, Tuesday, February 13, 2007, ISCC: Processor Platforms, Part Two
Source: IBM

1) AMD die size is an estimate; based on publicly available sources. not actual measurements
2) Intel die size is based on actual measurements

0.0283 mm

283 mm²

143 mm²

143 mm²

107 mm²

107 mm²
Product Cadence for Sustained Leadership

- 65nm
 - TICK: Pentium® D, Xeon™, Core™ processor
 - TOCK: Core 2 processor, Xeon processor

- 45nm
 - TICK: PENRYN Family
 - TOCK: NEHALEM

- 32nm
 - TICK: WESTMERE
 - TOCK: SANDY BRIDGE

- Restructured engineering 3 years ago
- Development model highly efficient
- 2+ generations proven delivery

All product information and dates are preliminary and subject to change without notice.
Penryn Family Optimized Microarchitecture

- Intel SSE4 instructions
- Fast Super Shuffle Engine
- Fast Radix-16 Divider Enhanced
- Intel Virtualization Technology
- Larger Caches: 6MB, 12MB
- 24-way Set Associativity
- Split Load Cache Enhancement
- Higher Bus Speeds
- Deep Power Down Technology
- Enhanced Intel Dynamic Acceleration Tech

> 3 GHz

Increased Performance and Energy Efficiency
Processor Microarchitecture Comparison

<table>
<thead>
<tr>
<th></th>
<th>65nm Intel® Core™ Microarchitecture</th>
<th>45nm Hi-k Penryn</th>
<th>AMD K8</th>
<th>Barcelona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Date</td>
<td>1H 2006</td>
<td>2H 2007</td>
<td>2003</td>
<td>2H 2007</td>
</tr>
<tr>
<td>Clock Frequency</td>
<td>3GHz</td>
<td>Up to >3GHz Demo’d 3.33GHz</td>
<td>3GHz</td>
<td>>2ghz Demo’d ?</td>
</tr>
<tr>
<td>Technology</td>
<td>Intel 65nm</td>
<td>Intel 45nm Hi-K+Metal Gate</td>
<td>90nm/65nm</td>
<td>65nm</td>
</tr>
<tr>
<td>Cache</td>
<td>Shared L2 Higher BW 256 bit data width</td>
<td>24 way Shared L2 Higher BW 256 bit data width</td>
<td>Dedicated L2 64 bit data width</td>
<td>Shared L3 128 bit data width</td>
</tr>
<tr>
<td>Total L2/L3 Cache</td>
<td>Up to 8MB</td>
<td>Up to 12MB</td>
<td>Up to 2MB</td>
<td>Up to 4MB</td>
</tr>
<tr>
<td>Issue Width</td>
<td>4 Issue</td>
<td>4 Issue</td>
<td>3 Issue</td>
<td>3 Issue</td>
</tr>
<tr>
<td>Pipeline Efficiency</td>
<td>14 Stage Speculative OOO Loads/Stores Macro & Micro Fusion</td>
<td>14 Stage Speculative OOO Load/Store Macro & Micro Fusion</td>
<td>12 Stage No load/store re-ordering</td>
<td>12 Stage No load/store re-ordering</td>
</tr>
<tr>
<td>System Bus</td>
<td>Up to 1333 MHz</td>
<td>Up to 1600 MHz</td>
<td>1000 MHz</td>
<td>1000MHz</td>
</tr>
<tr>
<td>SSE</td>
<td>Intel SSSE3 ISA 128 Bits/Cycle</td>
<td>Intel SSE4 ISA 128 Bits/Cycle</td>
<td>SSE3 (Equiv)</td>
<td>SSE3 (Equiv)</td>
</tr>
</tbody>
</table>

All product information and dates are preliminary and subject to change without notice.
Penryn Family Performance Early Indicators
45nm High-k vs. 65nm Intel® Core™ 2 and Xeon™ Processors

CLIENT (Quad Core)
- Imaging: ~15%
- 3D Rendering: >25%
- Gaming: ~40%
- Video Encoding: >40%

SERVER (Quad Core)
- JAVA: ~25%
- HPC Bandwidth Intensive: ~45%

Source: Intel

All product information and dates are preliminary and subject to change without notice.
Nehalem

Dynamic Scalability for Efficient Performance on Demand

- Fully Unlocks Intel 45 nm High-k Silicon Benefits
- Leverages 4 Issue Intel® Core™ Micro-architecture Technology
- Dynamically Managed Cores/Threads/Caches
- Simultaneous Multi-threading
- Multi-level Shared Cache Architecture
- Performance Enhanced Dynamic Power Management

Design Scalability Optimizes for Each Market Segment

- New System Architecture
- Scalable & Configurable Cache, Interconnects & Memory Controllers
- Optional High Performance Integrated Graphics For Client
- Scalable Performance: 1 to 16+ Threads & 1 to 8+ Cores
- Initial Products in Production in ‘08

All product information and dates are preliminary and subject to change without notice.
Accelerating Server Performance

Intel Server Performance Trajectory

Indexed

3.0x

1.0x

0.0x

1H’06 2H’08

Forecasted >3x end of ‘08

Source: Intel

All product and performance information and dates are preliminary and subject to change without notice.
Summary

• Making the right investments
• Tick-Tock model is thriving
• Performance and energy efficiency leadership today
• Penryn widens the competitive gap
• Nehalem extends the lead in 2H ’08
Questions
Risk Factors

This presentation contains forward-looking statements that involve a number of risks and uncertainties. These statements do not reflect the potential impact of any mergers, acquisitions, divestitures, investments or other similar transactions that may be completed in the future. The information presented is accurate only as of today’s date and will not be updated. In addition to any factors discussed in the presentation, the important factors that could cause actual results to differ materially include the following: Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term, significant pricing pressures, and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel’s products; actions taken by Intel’s competitors, including product offerings, marketing programs and pricing pressures and Intel’s response to such actions; Intel’s ability to respond quickly to technological developments and to incorporate new features into its products; and the availability of sufficient components from suppliers to meet demand. Factors that could cause demand to be different from Intel’s expectations include customer acceptance of Intel and competitors’ products; changes in customer order patterns, including order cancellations; changes in the level of inventory at customers; and changes in business and economic conditions. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; product mix and pricing; capacity utilization; variations in inventory valuation; excess or obsolete inventory; manufacturing yields; changes in unit costs; impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; and the timing and execution of the manufacturing ramp and associated costs, including start-up costs. Expenses, particularly certain marketing and compensation expenses, vary depending on the level of demand for Intel’s products, the level of revenue and profits and impairments of long-lived assets. Intel is in the midst of a structure and efficiency program which is resulting in several actions that could have an impact on expected expense levels and gross margin. The tax rate expectation is based on current tax law and current expected income. The tax rate may be affected by the closing of acquisitions or divestitures; the jurisdictions in which profits are determined to be earned and taxed; changes in the estimates of credits, benefits and deductions; the resolution of issues arising from tax audits with various tax authorities, including payment of interest and penalties; and the ability to realize deferred tax assets. Gains or losses from equity securities and interest and other could vary from expectations depending on equity market levels and volatility; gains or losses realized on the sale or exchange of securities; gains or losses from equity method investments; impairment charges related to marketable, non-marketable and other investments; interest rates; cash balances; and changes in fair value of derivative instruments. Intel’s results could be affected by the amount, type, and valuation of share-based awards granted as well as the amount of awards cancelled due to employee turnover and the timing of award exercises by employees. Intel’s results could be impacted by unexpected economic, social, political and physical/infrastructure conditions in the countries in which Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel’s results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel’s SEC reports. Please refer to Intel’s most recent Earnings Release and most recent Form 10-K or 10-Q filing for more information on the risk factors that could cause actual results to differ materially.
Legal Notices

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations, http://www.intel.com/performance/resources/benchmark_limitations.htm. Results have been simulated and are provided for informational purposes only. Results were derived using simulations run on an architecture simulator. Any difference in system hardware or software design or configuration may affect actual performance.