Opportunities & Growth

Financial Analyst Day 8 May 2003

CONFIDENTIAL

1

THE ARCHITECTURE FOR THE DIGITAL WORLD

Agenda

10.00am	The ARM World
	Tudor Brown, Chief Operating Officer
10.30	Segments & Growth
	Bruce Beckloff, Director, European Marketing
11.00	Break
11.10	Licensing Models
	Mark Evans, Director, Licensing
11.40	Upgrades & Derivatives
	John Cornish, Director, Product Marketing
12.10pm	Q&A
12.20	Lunch + Technology Demonstrations
	CONFIDENTIAL
	THE ARCHITECTURE FOR THE DIGITAL WORLD 2

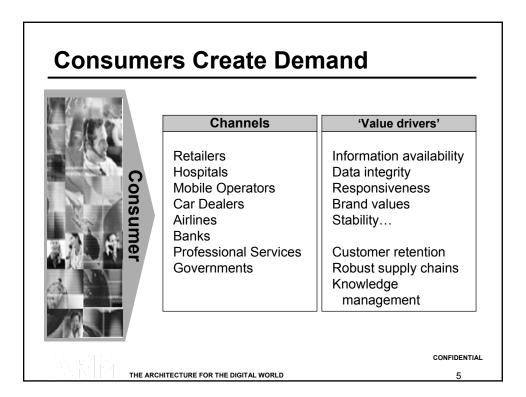
The ARM World

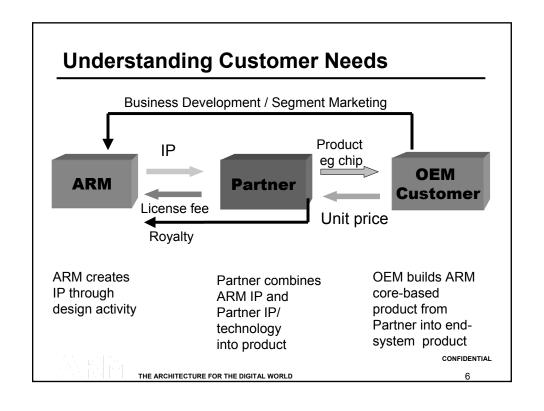
Tudor Brown
Chief Operating Officer
8 May 2003

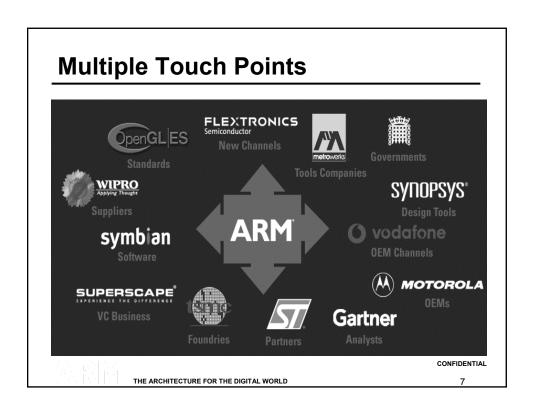
THE ARCHITECTURE FOR THE DIGITAL WORLD

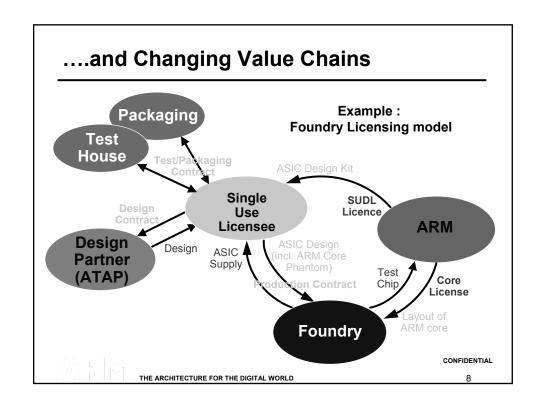
CONFIDENTIAL

.3

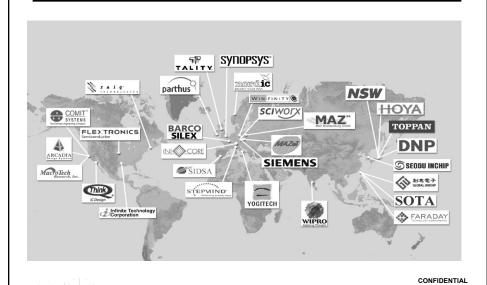

Agenda

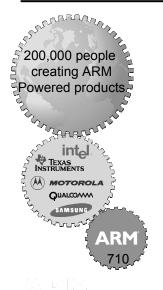

- The ARM Community
- Doing a design
- Why buy the products?
- Resulting position


CONFIDENTIAL


4

ANM





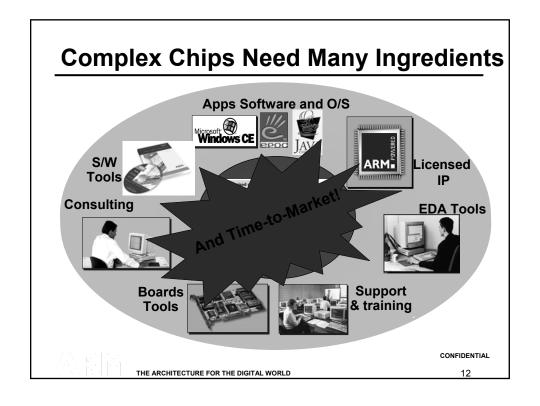
With Global Design Partners

THE ARCHITECTURE FOR THE DIGITAL WORLD

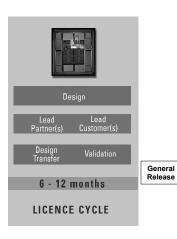
Giving 200,000 People Designing with ARM

- 112 semiconductor Partners who have internal or external manufacturing
- Doing 1000 design starts of which 600 become production worthy per annum - all of who need cores EDA tools and roadmaps
- Selling to 13,000 OEM customers
- Who have ~ 200,000 engineers worldwide actively designing with ARM cores in products
- All who need development tools and infrastructure

CONFIDENTIAL


10

Agenda


- The ARM community
- Doing a design
- Why buy the products?
- Resulting position

CONFIDENTIAL

11

The Tools for the System Designer

CONFIDENTIAL

THE ARCHITECTURE FOR THE DIGITAL WORLD

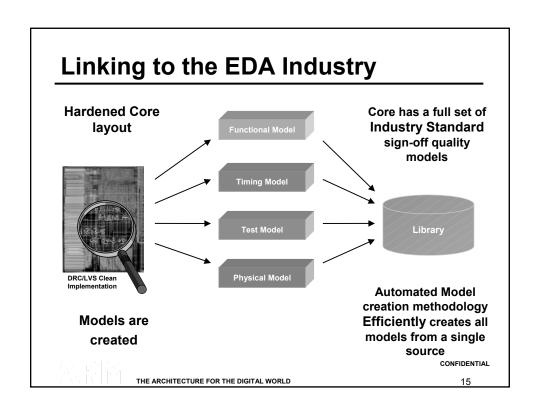
Code Development by RealView® tools

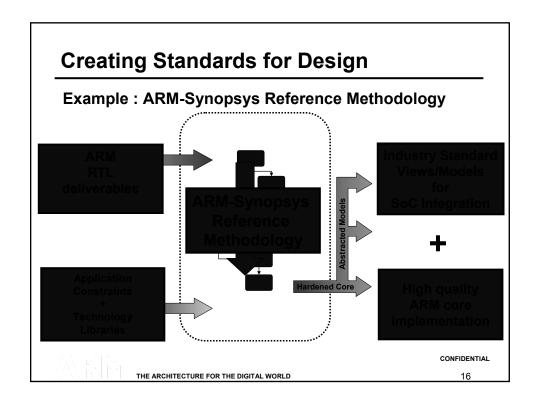
Compilation Tools

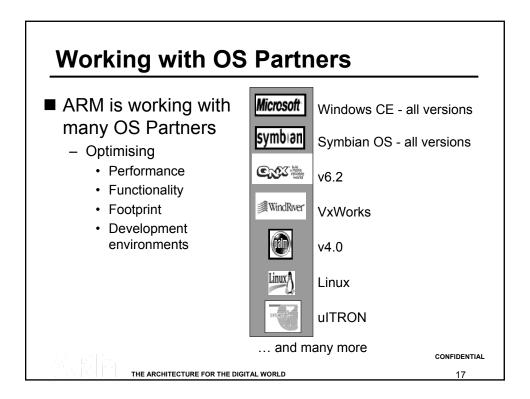
ARM Developer Suite™ Compilation Tools Generates code for the cores

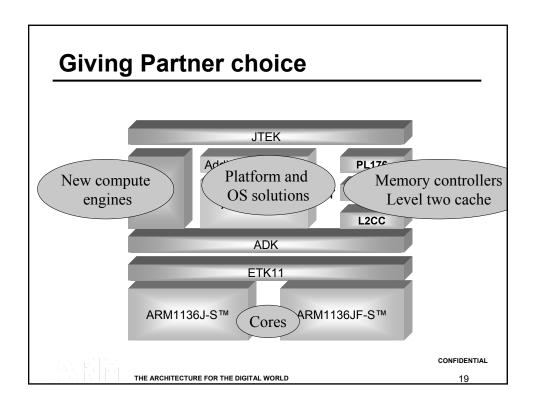
Debug Tools

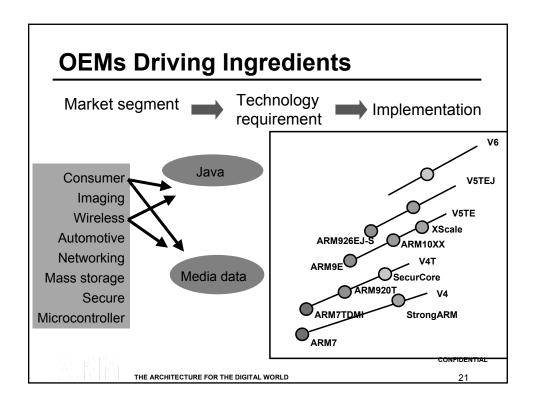
Multi-ICE® MultiTrace™ **Debug software**




Development Boards


Integrator™ Family Integrate and test RealView Debugger software and hardware


CONFIDENTIAL

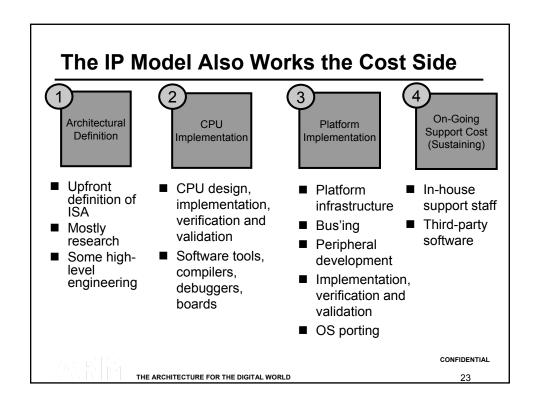


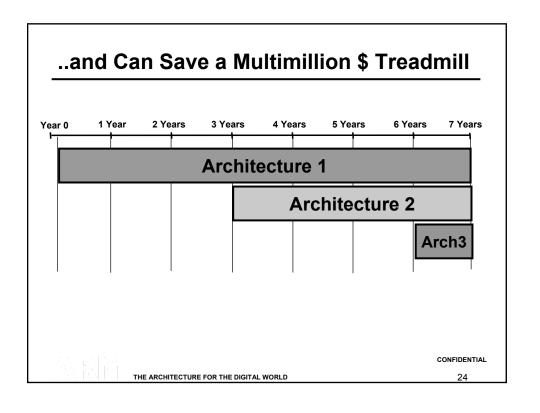
- The ARM community
- Doing a design
- Why buy the products?
- Resulting position

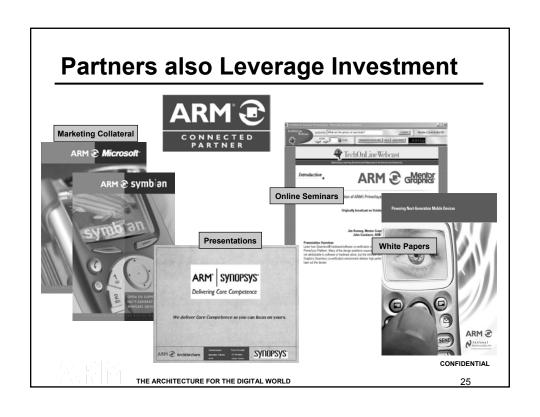
CONFIDENTIAL

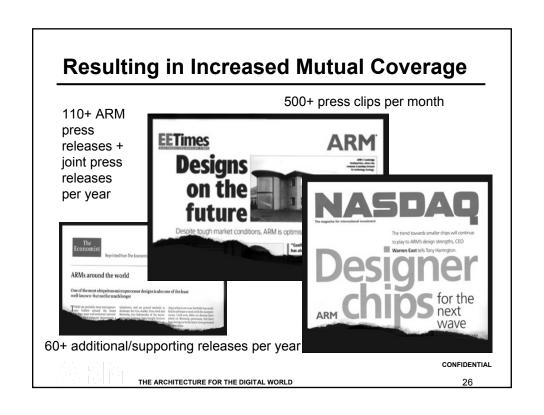
Ingredients are Key to Licensing

Performance is not the only driver – ingredients are critical

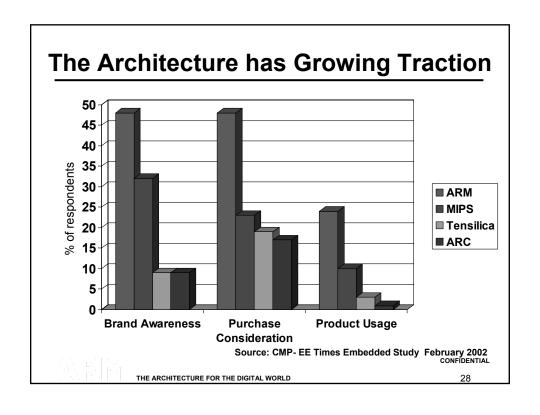

- Thumb® instruction set reduced code density and saved cost
- DSP extensions enabled increased signal processing and a better system level price performance trade-off
- Jazelle® hardware acceleration to accelerate performance of emerging applications for kids on mobiles

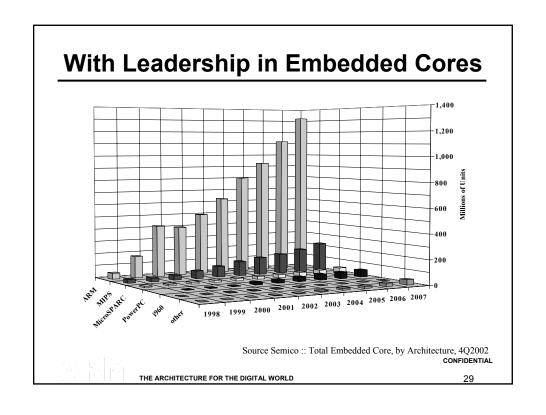

Coming soon.....

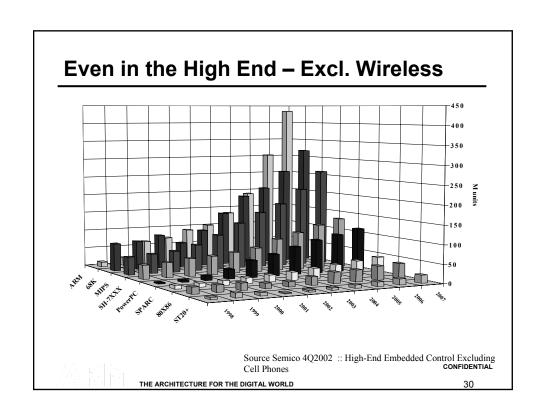

- New security architectures to protect information in our mobile world
- New technology to optimise code density and performance further
- Low-power Intelligent Energy Management technology
- Dynamic clustering technologies


CONFIDENTIAL

22




Agenda


- The ARM community
- Doing a design
- Why buy the products?
- Resulting position

CONFIDENTIAL

27

Segments and Growth

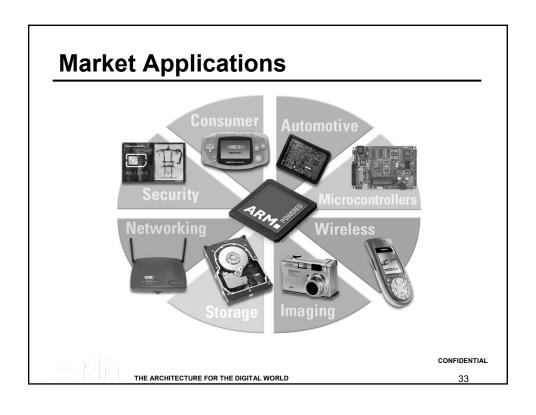
Bruce N. Beckloff
Director of Marketing - Europe
8 May 2003

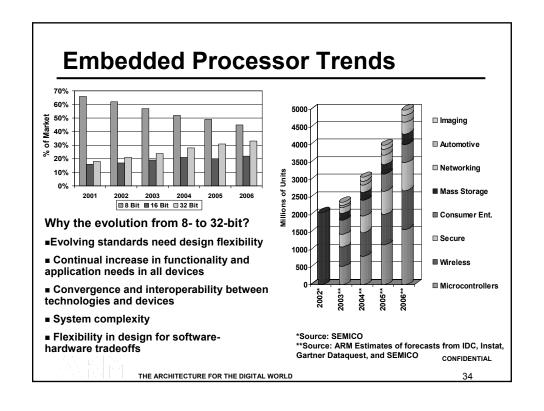
CONFIDENTIAL

31

Agenda

■ Applications Overview + Trends


THE ARCHITECTURE FOR THE DIGITAL WORLD

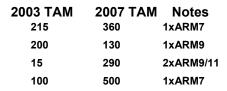

- Market Breakdown
- ARM Strategy

CONFIDENTIAL

32

MANA

Wireless


Key sub segments

- Voice phones
- Feature phones
- Smart phones / PDA
- Bluetooth™ peripherals

Segment drivers to 32-bit

- 85% market is 32-bit today
- **Performance for Apps**
- **OS Support**
- Clean SW development
- 32-bit address range
- Multimedia support

ARM's benefits to the segment

- Low power, low cost, wide support
- Symbian, Microsoft, Palm OS support
- Jazelle® Java HW accelerator
- Thumb® code density
- Great debug support
- **Multiple suppliers**
- **Brand leader**
- Roadmap

CONFIDENTIAL

Imaging

Key sub segments

- **Ink Printer**
- **Digital Still Camera**
- **Laser Printer**
- **Digital Video Camera**
- **Security Camera**

Segment drivers to 32-bit

- Increasing data throughput, needs high CPU frequency, 32-bit data paths
- Move ASIC hardware functions to software equivalent
- Standards-based firmware less risky than custom hardware
- A/V software codecs are widely available

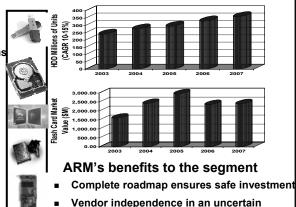
12M

2007 TAM

ARM's benefits to the segment

- Reduction of risk in ASIC design
- Standard platform firmware
- Standard bus infrastructure
- Third-party tool support
- **Multiple OEM sourcing**
- Time-to-market advantages using standard CPU architecture

CONFIDENTIAL


Storage

Key sub segments

- **Hard Disk Drives**
- Flash Cards & USB Keychains
- **Networked Storage**
- **RAID**
- **Tape Drives**

Segment drivers to 32-bit

- Growing storage densities require more performance and DSP capability
- Increased use of software instead of custom hardware requires more CPU horsepower
- **Growth in Networked Storage** (SAN) requires more bandwidth

- economy reduces risk
- World's best development tools solutions
- **Lowest Total Cost of Ownership (TCO)**
- Credibility as a globally recognised supplier

THE ARCHITECTURE FOR THE DIGITAL WORLD

32-Bit Growth Drivers for Storage

Hard Disk Drives: 1998

- Predominately 16-bit CISC Processors or DSPs
 - CPU Requirement: 50-100 MIPS
- · Heavy Hardware-Acceleration Lacked Flexibility
- Software used for housekeeping and Interface Control

Hard Disk Drives: 2003

- Increased precision forces move to 32-bit processors
 - CPU Requirement: 200 250 MIPS
- Software used for computationally-heavy servo control
- Dual-CPU (400+ MIPS) designs specified for high-end

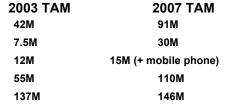
Hard Disk Drives: 2008

- · Increase in areal density necessitates a microactuator at the end of the main swing arm
 - · Massive increase in DSP processing
 - CPU Requirement: 800 950 MIPS
- Miniaturisation requires low-power consumption

CONFIDENTIAL

Consumer Entertainment

Key sub segments


- **Digital Set-top-box**
- **Digital Personal Audio**
- **Portable Gaming**
- DVD
- Colour TV

Segment drivers to 32-bit

- Performance requirements increasing on back of more networking, mass storage
- Multiple codec support driving market to soft solutions
- Mass storage in consumer devices driving more complex apps and OS's
- Cost constraints driving SoC developments where processors delivered as IP

1 25

ARM's benefits to the segment

- High Performance Roadmap with;
 - Java acceleration for MHP and OpenCable STB markets
 - Excellent code density characteristics for reduced system cost
 - Market leading SoC integration support to enable high levels of integration
 - Wide range of third-party OS, Middleware and application support
- Business finances

2003 TAM

477.9

208.2

64.2

47.7

26.3

CONFIDENTIAL

THE ARCHITECTURE FOR THE DIGITAL WORLD

39

2007 TAM*

734.7 587.8

153.5

98.1

72.8

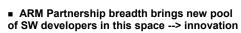
Secure

Key sub segments

- Gvt ID/IT security
- Pay-TV
- Health

Segment drivers to 32-bit

- Performance: Java Card™, Crypto, Biometrics
- New NVM processes allow 32-bit integration with min chip size impact
- Fragmentation of the value chain accelerates need for open platform



2006 TAM

671.0

478.3

117.9

81.8

58.2

ARM's benefits to the segment

■ High performance/low power trade-off

■ Small die area + industry leading code

density make solution cost-competitive to

- World-class quality of tools
- The most widely licensed 32-bit CPU for smart cards/secure applications is ARM

Networking

Key sub segments

- Wireless LAN
- Digital Modems (xDSL, cable)
- **Home Gateways**

Segment drivers to 32-bit

- Performance
- Efficient implementation/cost effectiveness
- Net endpoint intelligence
- Net standards implementation TTM
- Single platform consolidation

ARM's benefits to the segment

- Scaling CPU family implementations
- Complete solution for volume SoC dev't
- Wide spread availability from semis
- Solid third-party OS and apps software support
- Demonstrated uptake in the sub segments

CONFIDENTIAL

THE ARCHITECTURE FOR THE DIGITAL WORLD

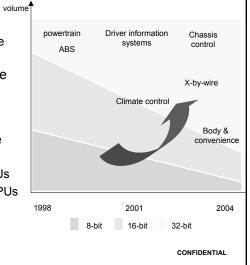
Automotive

Key sub segments

- ABS/Airbag/Safety
- **Body**
- **Dashboard**
- Infotainment
- **Powertrain**

Segment drivers to 32-bit

- Perf., OSEK, incr. Funct.
- Standards, OSEK, incr. Funct.
- Standards, OSEK, incr. Funct.
- Perf., grafics, standard products
- Perf., High End Timer IP, system IP


ARM's benefits to the segment

- Core in use and roadmap, code size, toolchain, fault robust IP/BIST
- Dual sourcing, standardisation
- Standard core, performance
- Performance, connected community
- Performance OK, but core does not matter, system that counts

CONFIDENTIAL

Evolution of Automotive Electronics

- Electronic systems are main differientator for vehicle mfgs.
 - safety, telematics, internet, x by wire
- Value of electronics continues to rise
 - \$940 to \$1,460 in 2004 per car (source: Gartner Dataquest Jan 01)
- By 2004 the mid-range car will have 40 to 50 CPUs
 - Today Volvo S80 has 18 major CPUs
 - New Mercedes S-class about 80 CPUs

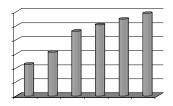
THE ARCHITECTURE FOR THE DIGITAL WORLD

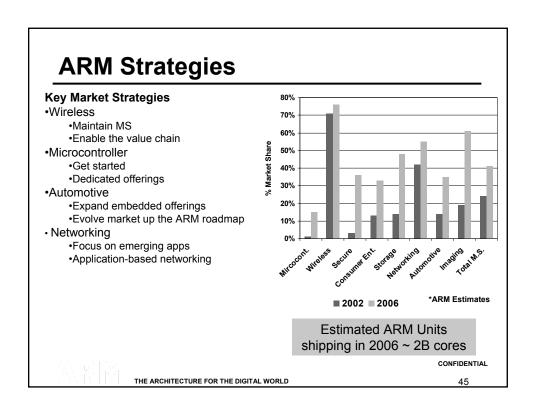
Microcontrollers

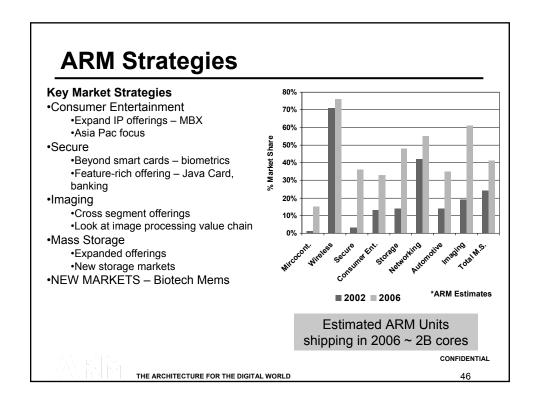
Key sub segments

- White goods
- Brown goods (low end)
- Industrial control
- **Building control**
- Wireless security

Segment drivers to 32-bit


- Flash technology
- Performance for connectivity
- **Extensive tools support**
- Low price parts
- Low price tools
- Channel and supply





ARM's benefits to the segment

- Low power, low cost, wide support
- Very large third-party tools community
- Great debug support
- Multiple suppliers offering wide range
- Roadmap

CONFIDENTIAL

Summary

- The market is moving away from 8-bit into 16and 32-bit markets because of technology and costs
- ARM is well positioned in all of its target markets to take advantage of the evolution
- Different market strategies needed because of timings and technology trends

CONFIDENTIAL

47

THE ARCHITECTURE FOR THE DIGITAL WORLD

Licensing Models

Mark Evans
Director, Licensing
8 May 2003

CONFIDENTIAL

48

Agenda

- Partnership overview
- Licensing objectives
- License 'Pyramid'
- Overview of each license model
- Summary

CONFIDENTIAL

40

THE ARCHITECTURE FOR THE DIGITAL WORLD

2002 Top 20 Semiconductor Companies Preliminary Top 20 Worldwide Vendor Ranking Based on Total Semiconductor Shipments Worldwide in 2002 (Millions of U.S. Dollars) 2002 Market CAGR (%) Share (%) **≭** Samsung 3 🗱 Toshiba **★** STMicroelectronics 6,305 ■ Texas Instruments 6 * NEC Electronics 5,389 5,681 3.7 7 X Infineon Technologies 8 X Motorola 4,828 4,800 3.1 9 * Philips Semiconductor 4,355 2.8 Hitachi 4,724 4,123 -12.7 2.7 11 * Mitsubishi 3.876 3,709 -4.3 2.4 12 🗰 Fujitsu 3,786 3.345 -11.6 2.2 13 🗰 IBM Microelectronics 3,792 3,307 -12.8 2.1 14 # Matsushita 2.804 3.211 14.5 2.1 * ARM Micron Technology 2,410 2.950 22.4 1.9 **Partner** 16 Advanced Micro Devices 3.801 2.710 -28.7 1.7 17 🗱 Hynix 2,426 2,685 10.7 1.7 18 🗱 Sony 2.570 2.678 4.2 1.7 19 🗱 Sharp 2.519 2,657 5.5 1.7 20 Sanyo 2 388 2.512 5.2 1.6 48.708 49.973 2.1 155,400 NFIDENTIAL THE ARCHITECTURE FOR THE DIGITAL WORLD 50

Licensing - Objectives

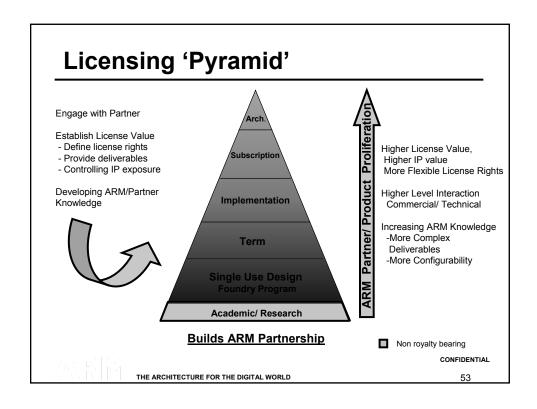
- Facilitate the proliferation of the ARM architecture, thus ensuring increasing volume of ARM core-based products across all markets
- Ensure momentum behind the ARM architecture is maintained regardless of market conditions
- Provide access and flexible solutions to address competitive, licensable architectures
 - e.g. ARC / MIPS / IBM (PPC) / Tensilica / Hitachi (SH)
- Build and grow partnerships with established and emerging companies moving Partners along the value chain
- License complementary IP to the ARM architecture

CONFIDENTIAL

5

THE ARCHITECTURE FOR THE DIGITAL WORLD

Evolution of Flexible Licensing Models


Our goal = ARM is everywhere

- Need to have a variety of flexible license models that work with the vast array of companies in the silicon business today
- Silicon providers range from very small (ie Resonext) to very large (ie Intel)
- All these companies have different capabilities and different needs

CONFIDENTIAL

52

ANM.

Validation, University, Research License

■ IP rights + costs: Very low

■ What this is: Provides design house partners (ATAPs),

universities and research facilities access to

ARM IP at low cost to validate, study, experiment and trial-run ARM technology. No

manufacturing right.

■ User profile: Design centres, universities, research

institutes and selected customers that want to

preview ARM IP

■ Partners: Many – (eg 37 ATAP™ Partners, many

universities)

■ ARM view: Strategic

CONFIDENTIAL

Foundry Programme: Single-Use Design License

■ IP rights + costs: Low. Royalty bearing

■ What this is: ½ of Foundry Programme. Single per-Use

Design implementation License (SUDL) based

on limited deliverables set.

■ Customer profile: Typically fabless semiconductor companies,

start-ups, small- to medium-size companies

with a single product need

■ Partners: More than 50 – mostly in the US and Taiwan

■ ARM view: 'Seeding' ground to bring customers into the

ARM partnership – affordable way to engage with ARM technology. Work closely with customer base, some will move up the

licensing pyramid.

CONFIDENTIAL

THE ARCHITECTURE FOR THE DIGITAL WORLD

55

Foundry Programme: Foundry Manufacturing License

■ IP rights + costs: Low. Royalty bearing

■ What this is: ½ of the Foundry Programme. Gives licensed

foundries right to manufacture what SUDL has

designed.

■ Customer profile: Wafer fab companies with global or regional

presence

■ Partners: 7 – TSMC, UMC, Chartered, AMI, Silterra,

Anam, Tower

■ ARM view: Critical to success of the Foundry Programme

- to enable SUDLs to build what they design.

Part of the 'seeding' strategy.

CONFIDENTIAL

Multi-use Implementation License

■ IP rights + costs: High. Royalty bearing

■ What this is: Per product Implementation license. Can be

perpetual or term bound (next slide)

■ Customer profile: Semiconductor companies that can make

multiple use of ARM IP to address a specific

need or a variety of needs

■ Partners: Many – typically medium to large

semiconductor companies have one or more

Implementation licences

■ ARM view: 'Sweet spot' of licensing – main focus, drive

licensing volume with this traditional model.

CONFIDENTIAL

THE ARCHITECTURE FOR THE DIGITAL WORLD

57

Term v Perpetual Implementation Licenses

- What is a Term license?
 - Implementation license limited to fixed period of time,
 2-4 years. Typically 50%-70% cost of perpetual.
 - Royalty rates higher
- Why introduce Term?
 - Lowers barrier to implementation rights license
 - ..yet maintains value for ARM
 - 'Pulls' SUDLs into this realm more value for both
 - Some companies have single product line focus where they do not need or want (or can afford) perpetual licence
 - Ensures ARM extracts available budget in difficult markets

CONFIDENTIAL

58

MANY

Subscription License

■ IP rights + costs: Very high. Royalty bearing

■ What this is: Gives Partners access to an agreed suite of

ARM technology for a finite period

■ Customer profile: Large semiconductor companies with wide

range of products targeting a number of

markets

■ Partners: 3 – ST, Philips, Samsung

■ ARM view: Focus only on large silicon companies;

minimises annual per-product negotiations

and legal discussions. High level of

partnership.

CONFIDENTIAL

THE ARCHITECTURE FOR THE DIGITAL WORLD

Architecture License

■ IP rights + costs: Highest. Royalty Bearing.

■ What this is: Provides rights to develop ISA

compliant implementations

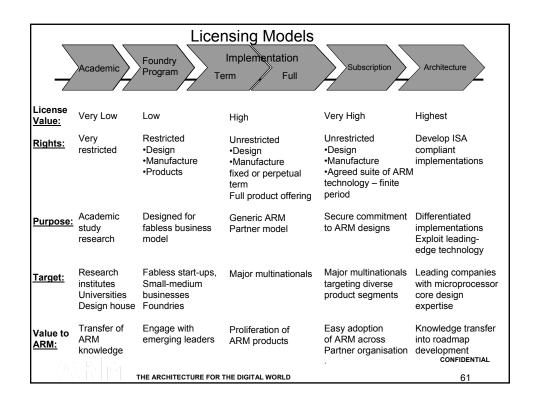
■ Customer profile: Companies with extreme amount of CPU

design skill set and experience, differentiate through use of design skill / technique, make

best use of process technology

■ Partners: 2 – Intel and Motorola

■ ARM view: Will be limited to those Partners that have the


in-house expertise to benefit, thereby

enhancing the ARM world

CONFIDENTIAL

60

Further Channels

- ALP Programme
 - Extension to the Foundry Programme
 - Value-added Partners
 - · Flextronics and Toppan
 - Full 'one stop shop' service
- In-licensing
 - Formal programme of third-party IP
 - Intelligent Energy Management (IEM) with National Semiconductor
 - Offer through established channels with current licensing models

CONFIDENTIAL 62

Summary

- ARM has multiple license models to address needs of entire semiconductor industry
- License rights and term scale to the cost of the licence
- Developing new channels for new business opportunities
- ARM maintains license value by providing the right model for the right situation; goal is success for both companies

CONFIDENTIAL

63

THE ARCHITECTURE FOR THE DIGITAL WORLD

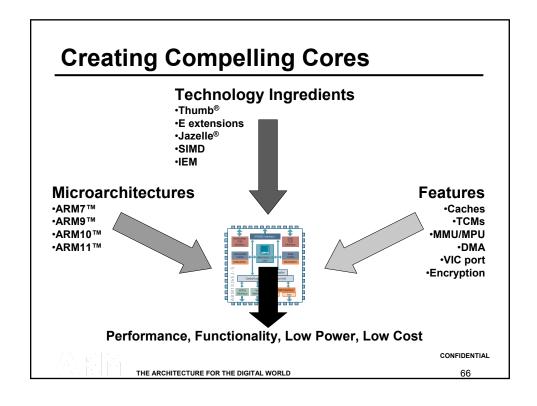
Upgrades and Derivatives

John Cornish
Director, CPU Product Marketing

8 May 2003

CONFIDENTIAL

64

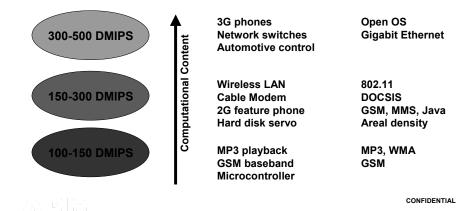

ARM

ARM Partner Model

- Understand Partner requirements
- Serve Partner's evolving needs
- Preserve Partner's investment in ARM
- Motivations to upgrade
 - New cores specified by OEMs
 - Evolution of end equipment needs
 - Partner entry in to new markets
 - Partners committing to fewer architectures

CONFIDENTIAL

65



Persistent Performance Points

- Long-term need for multiple performance points
 - Computational content driven by standards

THE ARCHITECTURE FOR THE DIGITAL WORLD

- Power and cost penalty for excess performance

67

ARM Microarchitecture Generations		
■ ARM7	1995	
 3 stage pipeline, unified bus interface 		
 ARM7TDMI® core:133 MHz 		
■ ARM9	1997	
 5 stage pipeline, Harvard architecture 		
– ARM926EJ-S™ core: 200 MHz		
■ ARM10	1999	
 6 stage pipeline, static branch prediction 		
 ARM1026EJ-S™ core: 266 MHz 		
■ ARM11	2002	
 8 stage pipeline, dynamic branch prediction 		
 ARM1136J-S™ core: 335 MHz 		
	CONFIDENTI	
THE ARCHITECTURE FOR THE DIGITAL WORLD	68	

Technology Ingredients

■ Thumb 1995 v4T

- 16-bit Code compression

■ E extensions 1998 v5TE

- Accelerate DSP and control algorithms

■ Jazelle 2000 v5TEJ

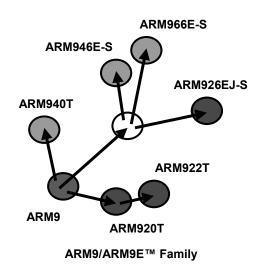
- Accelerate Java code execution

■ SIMD 2001 v6

- Accelerate audio and video performance

■ Intelligent Energy Management 2002

 Dynamic voltage and frequency scaling to reduce power and extend battery life


CONFIDENTIAL

69

THE ARCHITECTURE FOR THE DIGITAL WORLD

Family Derivatives

- Leverage the base microarchitecture
- Optimise power and performance
- Tune the component mix
- Add technology ingredients
- Extend the application range

CONFIDENTIAL

THE ARCHITECTURE FOR THE DIGITAL WORLD

70

Technical Advantages

- **■** Infrastructure support
 - Development tool availability
 - System software support
- Power
 - Reduced system weight and cost
 - Extended battery life
- Area
 - Reduced chip cost
 - Space to add other functionality

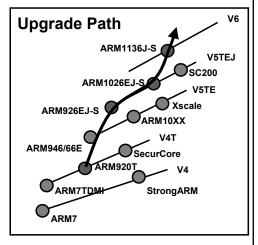
CONFIDENTIAL

7

THE ARCHITECTURE FOR THE DIGITAL WORLD

Business Advantages

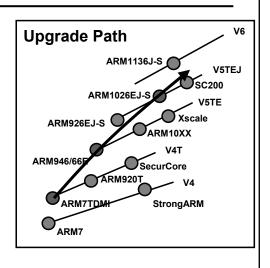
- **■** Win more sockets
 - Strengthen competitive position
 - Help displace proprietary architectures
- **■** Engineering cost
 - Reduce average core development cost
 - Reduce development time
- **■** Total Available Market
 - New core derivatives address the needs of more applications and Partners


CONFIDENTIAL

72

- Open operating systems
- Java applets
- Multimedia applications
- Games

CONFIDENTIAL


73

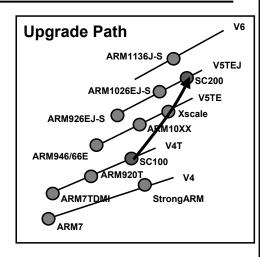
THE ARCHITECTURE FOR THE DIGITAL WORLD

Embedded Control Processors

- Predictable real time response
- DSP for modems, motor control
- Real-time debug capability
- Floating point

CONFIDENTIAL

74


THE ARCHITECTURE FOR THE DIGITAL WORLD

37

Secure Processors

- Super compact
- Protected IP
- Crypto acceleration
- Java Card acceleration

CONFIDENTIAL

75

THE ARCHITECTURE FOR THE DIGITAL WORLD

Upgrade Examples

■ Qualcomm

- 1998 licenses ARM7TDMI core
 - MSM3100 for CDMA wireless handsets
- 2002 licenses ARM926EJ-S core
 - MSM6100 for CDMA2000 handsets
- 2002 licenses ARM1136J-S core
 - For advanced wireless voice & data devices

■ Sanyo

- 2000 licenses ARM7TDMI and ARM7TDMI-S[®]
 - SANYO LC67F5104A microcontroller
- 2001 licenses ARM926EJ-S PrimeXsys™

THE ARCHITECTURE FOR THE DIGITAL WORLD

76

Upgrade Examples

■ Samsung

- 1996 licenses ARM7TDMI core
 - MSP Multi-Media Signal Processor
- 1999 licenses ARM9TDMI and ARM920T™
- 2001 licenses SecurCore™ SC100™ cores
- 2001 licenses ARM926EJ-S, ARM946E™, ARM1020E™ cores
- 2002 long term subscription license

■ Conexant

- 1997 licenses ARM7TDMI core
 - AnyPort RL56CSMV/3 central site modem
- Licenses ARM940T™ core
 - CX82100 home-network processor
- 2003 licenses ARM926EJ-S core

CONFIDENTIAL

77

THE ARCHITECTURE FOR THE DIGITAL WORLD

Future Directions

- **■** Architecture evolution
 - Enhanced security
 - Greater code efficiency
 - Scalable design
- Microarchitecture directions
 - Increased parallelism
 - Higher performance
- **■** Components
 - Intelligent Energy Management support

CONFIDENTIAL

78

Summary

- The ARM World continues to drive new business opportunities, in new markets
 - Solving real customer problems with a full value proposition
- ARM architecture helps solve SC Partners' cost of ownership challenges
 - The breadth and flexibility of our Licensing Models enable us to adapt to industry trends, while still maintaining the value of the ARM architecture
- Upgrades & Derivatives focus on ingredients (Media, Security, Power) as well as performance and so provide Partners with compelling solutions for their current and future applications
- Strengthening our leadership position
 - E.g. Ongoing success in wireless Media phones a reality; Personal data is a driver - imaging, storage, networking; New areas for 8-bit migration auto / MCU

CONFIDENTIAL

79

