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Introduction 
 
In modern data communications systems,  system designers are often concerned with measurements of 
nonlinearity and distortion.  Such quantities as input or output third-order intercept points,  spurious-free 
dynamic range,  or composite second order distortion,  composite triple beat distortion,  and cross-
modulation,  become critical specifications.   At first glance,  this is a surprising development.  A digital 
data stream is fundamentally a string of 1’s and 0’s,  and one would at first assume that transmission of 
digital data would place very few demands on system linearity beyond the normal variation in signal 
strength encountered in radio design.  This tutorial will examine why dynamic range plays an important 
role in digital communications networks,  and what steps can be taken to obtain high dynamic range in a 
cost-effective fashion.   
 

Digital systems are not just binary 

Binary data:  what range? 
 
The purpose of a digital transmission is to move a sequence of 1’s and 0’s from here to there.  Accurate 
representation of intermediate states – that is,  the linearity of the system – seems completely irrelevant.  
Why then is linearity important in practical communications systems? 
 
The importance of linearity derives from the limited slice of frequency spectrum allocated to any particular 
signal in wireless communications.   Nonlinear systems transmit distorted signals.   The distortions are 
equivalent to changes in the Fourier transform of the signal;  that is,  unintended frequencies are radiated 
which may interfere with neighboring channels.   Thus radio designers need to avoid operating at 
amplitudes at which such distortion is significant.    
 
Accomplishing this design objective would seem very simple if a stream of 1’s and 0’s is all that is to be 
transmitted,  but practical systems are more complex because of the large peak-to-average ratio of many 
digital signals.   Communications systems must be designed for minimum distortion not just at amplitude 
levels which are typical of the signal,  but also for rare excursions to much higher voltage or power.   
 
In the remainder of this tutorial we’ll examine how this situation comes about,  and how a system designer 
can solve the problems that result through appropriate design procedures and the use of semiconductor 
components intended for these applications.     
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Spectral Efficiency and Filtering 
  
Wireless transmissions must fit into a specific frequency band,  typically allocated by a regulatory agency.  
As the reader will recall from basic Fourier transform theory,  the spectrum of an ideal rectangular pulse 
(i.e. an isolated “1”) has spectral components out to infinitely high frequency.  If this baseband data is 
mixed up to the carrier frequency,  one would have to reduce the bit rate of the signal to an intolerably low 
rate to avoid having the sidebands of the carrier extend past the allowed bandwidth.   
 
The conventional approach to limit signal 
bandwidths within allocated channels is to 
filter the waveform and tolerate less abrupt 
transitions of the signal state.  If one 
arbitrarily filters the spectrum of a 
datastream,  the resulting time domain 
waveform may suffer from interference 
between neighboring pulses,  since the rise- 
and fall-times of the pulses may have 
become comparable to the separation 
between bits.   Nyquist [1] showed the 
optimal way of filtering a pulse stream 
results in waveforms in the time domain 
with the very convenient property that each 
pulse,  though it may be much wider than a 
single bit time,  goes to zero at every 
neighboring sampling time.  At evenly 
spaced sample times,  only the voltage 
from the current bit is being sampled,  even 
though at other times considerable 
interference from other bits is present.  
Figure 1 shows an example of original 
discrete data and the resulting filtered data:  
note that the filtered data intersects the 
discrete data at each sampling time,  
though there is considerable disagreement between the two at other times.    

 
 
Such filtering serves to maximize the data rate for a given bandwidth,  but at the cost of distortion of the 
waveform in the time domain.   Bandwidth-limited distortion leads to excursions of the time-domain 
waveform past the nominal data levels;   the peak-to-average ratio of the signal is increased beyond that of 
the unfiltered signal.   Filtering the datastream leads to an increase of around 30-40% in the peak 
amplitude,  depending on the exact filter used.   
 

Spectrally Efficient Modulations 
 
Transmission of a 1 or 0 in a given time slot is equivalent to sending one bit per sample period.   One can 
increase the rate of data transmission in bits per second by decreasing the sample period.   However,even 
when the data has been filtered as discussed above, the spectral width of the data grows larger,  since the 
filter width (roughly B/2 where B is the bit rate) is inversely proportional to the sample period.   

Figure 1:   Comparison of ideal “m-ary” data and Nyquist-
filtered version of the same data,  using less bandwidth.  [A 
raised-cosine filter with rolloff of 0.3 was used.]   
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An alternative solution is to use the same rate 
B,  but send more information in each sample 
time.   It is useful to denote the signal that is 
sent in a given sample time as a symbol.  
Then if a symbol can be made to represent 
more than one bit,  the bit rate may be 
increased without decreasing the sample time.    
One might use several differing amplitudes of 
the signal:  a symbol which can take four 
amplitude levels transmits 2 bits.   However,  
the noise immunity of such a multilevel 
approach is inferior to that obtained by 
exploiting the phase of the carrier.   Figure 2 
shows a signal constellation (depiction of the 
phase and amplitude of the desired levels) for 
both the 4-amplitude pulse-amplitude 
modulated  (PAM)   signal  and an equivalent signal 
exploiting changes in the phase:  quaternary phase 
shift keying (QPSK).   The QPSK signal points are 
spaced farther from each other than the PAM signal 
points for the same number of bits per symbol,  and 
thus have better immunity to noise [2].  

 
 
What happens to this simplistic picture when we 
include the transition from one symbol to another?     
In practice,  QPSK is often implemented by 
combining two binary bit streams,  one modulating 
the carrier and the second modulating a 90-degree-
phase-shifted version of the carrier:  these are the 
in-phase (I) and quadrature (Q)  parts of the signal   
(Figure 3).    
 
 
Just as in the case of a simple one-bit symbol,  the incoming bit streams are filtered to make efficient use of 
the allocated spectrum..     The resulting signal does not in general follow a simple path from one 
constellation point to the next,  but a complex data-dependent gyration. An example is shown in Figure 4.    
 
This complex path gives rise to significantly larger peak values of voltage and signal power than the 
nominal values associated with the constellation points.     For the particular trajectories shown in Figure 4,  
the peak instantaneous power is about 2.7 times larger than the average value,  or 4.3 dB in logarithmic 
terms.      

 
 
 

Figure 2:   4-level PAM and QPSK constellations 

Figure 3:  I/Q Modulator for QPSK and other 
QAM modulations 
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Multilevel Signals 
 
In addition to the challenges of filtered complex 
constellation paths,  standard communications protocols 
often involve the transmission of more than one signal 
simultaneously,  especially in the “downstream” 
direction, from a basestation to a number of handset 
users.     Multiple simultaneous signals inevitably lead to 
rare peak levels much higher than the average signal 
power. 
 
An example for binary signals is shown in Figure 5:   the 
addition of multiple uncorrelated bit streams produces a 
final signal which can have many possible levels.   The 
probability of each “voltage” level is proportional to the 
number of ways in which it can result.  For example,  in 
the case in which two bilevel signals are combined,  
there is only one way to make a level of +2 and only one 
way to make a level of –2,  but there are two ways to make 
a level of 0.   Thus,  a zero is twice as likely to occur as 
either of the extreme cases.  In the general case,  if we 
assume equal likelihoods of 1 or 0 in the incoming data 
streams,  the probability of obtaining a level  m from n 
streams is described by the binomial coefficient: 
 

Figure 4:   Trajectory in phase-amplitude space for a filtered QPSK signal 
corresponding to 256 bits of pseudo-random data;  inset contains histogram 
of instantaneous magnitudes (16 points per data bit)  

Figure 5:  The sum of a large number of binary 
signals gives rise to a normal distribution. 
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As the number of signals n grows large,  the 
distribution of  voltages closely approximates 
a normal or Gaussian distribution,  with 
standard deviation of √N / 2.   The 
distribution of signal power is a chi-squared 
distribution of order 1 for the case where 
each signal is either on or off,  or a Rayleigh 
distribution in the case where there are two 
orthogonal components (“I” and “Q”) 
combining to form the final signal.  The 
corresponding peak to average ratios,  where 
the peak is defined to be a signal with 
probability of  10-5,  are 13.8 and 11.4 dB,  
respectively.   
 
Consider a finite example of 16 combined 
binary streams,  each of which can take a 
value of either +1 or –1 volt (chosen to make the 
average value = 0).    The possible levels vary from 
+16 to –16 volts in steps of 2.  The probability 
distribution for obtaining each possible voltage level is 
shown in Figure 6.   
 
Note that the probability of the extreme values 
is so low that no bar is shown on the graph;  the 
actual value is (1/65,536) = 1.5x10-5 for +16 or 
–16.     Each voltage value is associated with a 
power dissipation;  for simplicity,  assume that 
the voltages modulate the level of a carrier 
signal in a 50 Ω  system,  so that the power is 
V2/50.  We can then obtain a similar 
distribution for the probability of a given output 
power level, shown in Figure 7   
 
The peak power occurs when all the signals are 
either +1 or –1:  i.e. (162)/50 = 5.12 W.  
However,  the average power is much lower,  
because in the vast majority of cases the signals 
oppose each other and average out to a small 
transmitted power.   The ratio of the peak to 
average is 16:1 or 12 dB.    
 
Such a huge ratio has significant practical 
consequences.  If one were to design a radio transmitter to handle twice the average power  (0.5 W) without 
distortion,  the transmitter would work well 90% of the time.   However,  in order to achieve a reasonable 
bit error rate of 10-5,  it is necessary to provide a much larger power handling capability of about 5 Watts,  
with associated increases in cost,  size,  and DC power consumption.    The extent to which the average 
power must be backed off from the peak power will be discussed in more detail later in this tutorial.  
 

Figure 6:  Probability of positive voltage values 
for the sum of 16 uncorrelated (+1/-1) streams 

Figure 7:  Probability of a given power level for 
the 16 combined binary streams of figure 6.   
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CDMA  
 
Let’s examine a practical example in which filtering, efficient modulation,  and multiple simultaneous 
signals combine to generate a high peak-to-average ratio signal.   
 
Code-division multiple access (CDMA) is a spread-spectrum technique employed in cellular 
communications.   In this approach,  many subscribers can use the same frequency band at the same time 
without significant interference.   Each bit of a user’s binary bit stream is multiplied by a code consisting of 
a sequence of positive or negative values, each of which is much shorter in duration than the data bit it 
multiplies.   The resulting signal has a higher effective bit rate than the original signal,  and is thus spread 
out in frequency.   If individual codes are chosen to be orthogonal to each other or nearly so,  multiple 
signals can be sent using the same frequency.  Each user multiplies the total signal by their individual code,  
thereby extracting only their data stream.    
 
In actual practice, the individual bit streams are passed through a Nyquist filter and encoded in a variant of 
QPSK,  then added together.   In the IS-95 CDMA standard for cellular telephony, as many as 20 individual 
user data streams may be simultaneously encoded onto a single downstream signal, leading to a situation 
very much like that shown in Figures 6 and 7 above. 
 
An example of the resulting complex trajectory is shown in Figure 8,  which depicts the path of a signal 
representing 10 CDMA channels,  each transmitting 256 symbols,  in phase space.  The trajectory spends 
most of its time near the center of the phase-amplitude plane,  at low signal amplitudes.  However,  
occasional excursions occur to the constellation points at the outer edges of the range,  giving rise to 
infrequent but large peak signal voltage and power.  The amplitude of this 10-channel signal could grow as 
large as √2 (the corners of the dotted box in Figure 8) if all the signals were in phase,  but the extreme is 
sufficiently unlikely that it doesn’t appear in the limited simulation shown in the figure.     The estimate of 
the average amplitude (about 0.4) obtained from the simulation should be quite accurate,  so that we can 
estimate the ratio of peak to average power at a reasonable probability level (e.g. 10-5) as 
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This result is very close to the 12 dB peak-average ratio obtained from the simplified Gaussian signal we 
looked at above.     
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Other High-Dynamic-Range Signals 
 
Orthogonal frequency-division multiplexing (OFDM) is a modulation technique that is used in fixed-
wireless communications systems and in some current and proposed wireless LAN standards.   In this 
technique,  a high-rate bitstream is separated into a set of lower-rate streams,  each of which is transmitted 
on a separate carrier frequency.   The low bit rate means that the individual carriers are relatively immune 
to time-dependent impairments such as multipath distortion,  a phenomenon resulting from the differing 
time delays of the various paths an electromagnetic wave can follow as it travels from transmitter to 
receiver.   The individual carrier frequencies are chosen to be orthogonal to each other,  so that they can be 
spaced very close together and still allow accurate extraction of each signal.   In practical systems QPSK or 
a similar efficient modulation scheme, with filtering,  is employed for each carrier,  and the final signal is 
actually generated and demodulated digitally using advanced signal processing techniques,  rather than 
employing separate modulation of a large number of analog carrier signals.     The OFDM signal is thus 
also a sum of a large number of uncorrelated bitstreams;   the amplitude varies widely,  with a characteristic 
time of roughly 1/BW where BW is the bandwidth of the signal.  A realistic OFDM signal, such as that 
specified in the IEEE 802.11a standard,  employs 52 subcarriers and has a roughly Gaussian distribution of 
amplitudes,  with a peak-average ratio of about 10 dB at a probability of 10-5.   
 
Another practical example of large peak-average ratio signals are those employed in cable TV systems.  In 
the United States,  such signals are composed of a multitude of 6 MHz wide channels (up to 110).  Each 
channel contains either an analog NTSB television signal or a digital signal using a generalized version of 

Figure 8:   Simulated constellation diagram and amplitude 
distribution for 10 superimposed QPSK-modulated CDMA 
signal streams.   
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QPSK that allows multiple phases and amplitudes:  quadrature amplitude modulation  (QAM).  A filled 
band contains signals from roughly 50 to 850 MHz.   The peak-to-average ratio is roughly 12 dB,  much as 
we observed in the ideal Gaussian-distributed signal we examined in Figures 6 and 7.  The extremely 
broadband nature of the CATV signal (> 4 octaves wide) means that both second and third order distortions 
are in-band,  as will be discussed in the next section,  so the question of system linearity is particularly 
important for cable TV analog design.     

Effects of Nonlinearity   
 
We have shown that many digital wireless communications requirements lead to signals with a significant 
range of amplitudes.   What consequences result?  Why do we care?   

Third-order distortion:  spurious frequencies and ACPR 
 
A perfect linear system can change the relative intensities and phases of the frequencies in its input,  but 
doesn’t generate any new frequencies.  If the input is bandlimited to a specific frequency channel  (in order 
to meet regulatory specifications and avoid interference with other wireless communications channels),  the 
output  will be bandlimited too.    
 
However,  any nonlinearity in the transmitter can generate additional frequencies not present in the input 
signal.   The origin of these additional frequencies can be understood very simply from the trigonometric 
identities: 
 

 [cos(x)]2 =  ½ + ½ cos(2x)  
 [cos(x)]3 =  ¼[3 cos(x) + cos(3x)] 

 
with similar identities for sin(x).   We can see that a nonlinear response that looks like a quadratic function 
generates a new frequency component at twice the frequency of the input signal,  and that a distortion that 
looks cubic not only generates a new frequency at three times the original,  but also a distortion term that 
changes the amplitude of the original input frequency.  These changes are depicted in Figures 9 (a) and (b).   
 

 
Figure 9(a):   Second-order distortion of a signal results in an offset,  frequency-doubled output 
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Figure 9(b):  Third-order distortion of a signal distorts the amplitude of the original signal as well 
as adding a component at triple the original frequency 
 
These simple cases illustrate the general rule that even-order distortion creates DC offsets and even 
harmonics,  whereas odd-order distortions create odd harmonics and signals at or near the input 
frequency.  The even-order harmonics are usually easy to filter out (except in very broadband systems like 
cable TV);  it is thus odd-order distortion that mostly concern us in digital communication systems.   
 
A real amplifier operating in the small-signal regime 
will be nearly linear with some small second- and 
third-order curvature in its transfer characteristic.  
The relative amount of third-order distortion in the 
output will be proportional to the square of the 
signal amplitude:  distortion grows as the amplitude 
cubed,  and the signal itself grows linearly,  so their 
ratio is x3/x = x2.     This relationship is depicted 
schematically in Figure 10.    To the extent that the 
slope of the distortion line is really equal to 2,  one 
can completely describe the amount of third-order 
distortion at any input power simply by specifying 
one point on this line.   Typically,  the point that is 
specified is the power at which the third-order 
distortion becomes equal in magnitude to the output 
signal :  this point defines the input and output 
third-order intercept points (IIP3 and OIP3).    The 
dotted portion of the distortion line shown in figure 
10 emphasizes the fact that the OIP3 or IIP3 cannot 
be directly measured:  for input powers close to 
IIP3,  higher-order distortions will become large,  
and the distortion term will deviate strongly from a 
simple line of slope=3.   Reported IIP3 values are 

Figure 10:   linear output power and third-order 
distortion (logarithmic scales for input and output 
power) 
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extrapolated from measurements at very low power where the distortion is small (typically 10-30dB below 
the power at which significant gain compression is observed).    
  
The amount of distortion is very sensitive to signal amplitude.  Signals that have a large peak-average ratio, 
like the digital signals we discussed above,  will encounter significant distortion even when a constant-
amplitude signal of the same average power would undergo essentially no distortion at all.   
 
Third-order nonlinearities produce distortion of the input signal:  in-band distortion.  However,  when more 
than one frequency is present in the input signal,  third-order distortion will also result in adjacent channel 
interference.   This effect arises from the interaction of the frequencies in the signal: intermodulation 
distortion.   A simple example will clarify the mechanism.   Assume there are two nearby frequencies in the 
input signal,  and examine what happens when a third-order distortion acts on them:   
 
 [ cos(x) + cos(x-δ) ]3 = [cos(x)]3  +  [cos(x-δ)]3 +  3[cos(x)]2 cos(x-δ) + 3cos(x) [cos(x-δ)]2 
 
Using the trigonometric identity  cos(x) 
cos(y) = ½ cos(x-y)  +  ½ cos(x+y),  and 
remembering from our previous 
discussion that squaring a cosine doubles 
the frequency,  we see that the third and 
fourth terms contribute frequencies of  
 
 [2x  -  (x-δ)]  =  x+ δ 
 
and [2(x- δ) – x ]  =  x – 2 δ   
 
(as well as the in-band distortions and 
higher harmonics we’ve examined 
before).   If the two original frequencies 
were at opposite ends of the allowed 
spectrum,  then the two new frequencies 
are outside the boundaries of the initial 
channel but too close to it to be easily 
filtered out.   This effect is shown in 
Figure 11.   
 
 
The Fourier transforms of most digital signals generated from pseudo-random input bitstreams have 
roughly constant amplitude out to the first zero – that is,  digital signals contain lots of frequencies out to 
the edges of the channel.   Each possible pair of frequencies will contribute to the adjacent channel 
interference.  The overall effect is to produce a pair of shoulders on either end of the intended spectrum as 
the input power (and thus distortion) increase:   this phenomenon is known as spectral regrowth.   An 
example is shown in Figure 12,  for the same 10-channel CDMA signal described previously.    
 

Figure 11:  Third-order distortion leads to intermixing of 
neighboring frequencies,  creating interference in 
adjacent channels 
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Figure 12:   Adjacent–channel interference due to nonlinear distortion of a multichannel 
CDMA signal 

 
 

Clipping 
 
Any real amplifier can only supply a finite output voltage:  even if the device is ideal,  the output can’t 
exceed the supply voltage.      For large signals,  this clipping of the output signal becomes the dominant 
nonlinear effect.   For multichannel digital signals with large peak-to-average ratios,  clipping will first 
occur at the rare excursions to high amplitude,  as shown schematically in Figure 13.      
 

 
Figure 13:   Clipping of signal with large peak-average ratio 

 
 
Unlike 3rd-order distortion,  clipping distortion results in a relatively broad spectrum typically extending 
well beyond the adjacent channel.   The magnitude of a complex Gaussian signal has a Raleigh distribution,  
so that in the limit when clipping is rare,  the probability of clipping is exponential in the ratio of the 
average power to the clipping level: 
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To analytically estimate the adjacent-channel interference due to this infrequent but abrupt distortion, one 
would need to calculate the bandwidth of the distortion,  which turns out to be quite difficult to do in 
general.   A semi-empirical approach using a slightly modified functional form give an excellent fit to data 
from full numerical simulations (Figures 14 and 16 below): 
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In a log-log plot (i.e. dB on both axes) typically used to depict distortion power or adjacent-channel 
interference,  the clipping distortion will appear as an exponential in the input power,  increasing rapidly 
from a small value as the input power approaches within (roughly) the clipping power divided by the peak-
average ratio.  
 
  

Combined Effects of Clipping and Third-Order Distortion 
 
In real devices,  both these distortion effects act simultaneously, in addition to higher-order amplitude 
distortion and phase-distortion effects that we have ignored here for simplicity.   The net result is that 
clipping dominates adjacent-channel interference at high input power,  whereas third-order distortion 
dominates when the input power is backed off from the clipping level by more than the peak-average ratio.   
Thus,  the clipping-dominated regime expands for signals with increasing peak-average ratio.    
 
To demonstrate these phenomena,  we have modeled a simple system in which the transfer characteristic 
has a small third-order term for amplitudes less than a clipping level,  and then is completely clipped to a 
constant output amplitude for inputs larger than the clipping level.  The result is shown in Figure 14 for two 
different values of the third-order distortion and two different composite CDMA-format signals.    We can 
see that the interference behavior is separated into distortion-dominated and clipping-dominated regions.   
The clipping-dominated region extends to lower input powers when more channels are superposed,  as one 
would expect from the increase in peak-average ratio that results.  The two-tone 3rd order distortion is 
almost equal to that generated by the 10-channel signal in the low-power regime.  This fortunate agreement 
explains in part the utility of simple two-tone measurements [3].   
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Figure 14:  Combined third-order / clipping distortion characteristic for piecewise-cubic 
transfer characteristic.   SOLID:   two-tone signal.   DASHED:  10-channel CDMA signal.  
BLUE (top):  high cubic distortion.  RED (bottom):  low cubic distortion.  

 

Design of High Dynamic Range Systems 

Component Specifications 
 
We have established that the designer must account for nonlinear effects and distortion in specifying 
components for digital wireless communications systems.  Let us consider how a designer, when 
constrained by a minimum output power requirement,  maximum adjacent channel interference 
specification,  and signal of known peak-average ratio,  might select an appropriate amplifier.   Assume in 
the discussion below that the designer seeks to satisfy the specifications with the smallest acceptable values 
of clipping power and intercept.  As discussed previously,  interference due to clipping falls rapidly as the 
input signal is reduced.   To a first approximation,  one might simply ensure that the device clipping level is 
larger than the desired output signal by at least the peak-average ratio to ensure that clipping is negligible:   
 

[ ]P P P
Aclip out= +   (where all quantities are in dB or dBm)     {2} 

 
That is,  we back off the signal level from the clipping level by the peak to average ratio.   
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It is then necessary to ensure that the third-order 
distortion is sufficiently small to meet the ACPR 
specification.  Since the third-order power is 
proportional to the cube of the signal,  its ratio to the 
signal power goes as the square of the input power;  
that is,  ACPR changes by 2 dB for every dB change 
in signal power.   We therefore have as our second 
condition: 
 

OIP
ACPR

Pout3
2

− =     

     {3} 
 
where ACPR is the specification requirement for 
adjacent channel interference.   These relationships are 
shown schematically in figure 15.   
 

 
 
 
 

 
By subtracting equation {2} from 
equation {3} we obtain a 
requirement on the amplifier which 
is independent of the output power 
level: 
 

[ ]OIP P
ACPR P

Aclip3
2

− = −

    
   {4} 
 
Equantion {4} shows that 
demanding ACPR specifications 
will require large values of linear 
efficiency ,  η =  OIP3 – Pclip.    
 
In order to provide a more complete 
treatment of the problem at this 
level of approximation,  we must 
take into account two effects 
ignored in the simplified treatment 
of equations {2}-{4}.  First,  the 
actual shape of the clipping 
distortion characteristic should be modeled 
more accurately,  instead of assuming it to 
fall to zero for backoff   [Pclip – Pout] > 
(P/A) (see Figure 16). Using the empirical 
fit from eqn. {1} with all quantities 
expressed in dB or dBm, we obtain:   

Figure 15:  Simplified scheme for determining 
component performance from specifications 
 

Figure 16:   modeled distortion for overlaid CDMA-like 
QPSK channels,  showing the effects of changes in the 
number of channels (i.e. in [P/A] ratio) on clipping and 
third-order distortion 
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A ACPRclip out− = + − −0 9 26 17 6. . ln      {2’} 

 
The resulting backoff is nearly linear in the peak-average ratio,  as equation {2},  but is somewhat offset,  
so that less backoff is needed for smaller values of |ACPR|.     
 
 The second effect neglected in {3}is the change in third-order as the peak-average ratio changes,  since we 
must average over a distribution of signal powers to obtain the expected distortion.   This effect is also 
shown in figure 16.   A convenient empirical fit to the model,  assuming that the (P/A) ratio at a probability 
of 10-5 is roughly 11.5 dB,  gives a correction factor to equation {3}:   
 

[ ]OIP
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Aout3

2
115− = − +.        {3’} 

 
 

The expression for linear efficiency accounting for clipping shape and third-order effects is then: 
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A ACPRclip3
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The results are summarized as contour charts in  Figures 17 and 18.    Linear efficiency is mostly 
determined by ACPR;  stringent interference specifications require high values of OIP3 relative to the 
clipping power.   Backoff is determined jointly by the peak-average ratio of the signal and the ACPR spec;  
modest interference requirements (e.g. –30 dBc) are easily met for output power close to clipping,  whereas 
stringent ACPR specs cause the backoff to become roughly equal to the peak-average ratio.   
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Figure 17:  Linear efficiency (η = OIP3 – Pclip) requirement 
vs. signal (P/A) ratio and ACPR requirement,  based on 
simplified model of clipped third-order distortion for CDMA-
like signals 
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It is important to note that these design graphs are based on simplified models of real devices,  in order to 
enable selection using only the parameters typically available on datasheets.   Important trends displayed in 
the graphs are representative of real devices,  but for any specific circuit application it is imperative that the 
designer confirm these predictions with measured data.     Factors not accounted for include higher-order 
distortions,  phase distortion (AM-PM conversion),  and the actual shape of the clipping region of the 
transfer function.   
 
 

Approaches to High Dynamic Range Devices 
 
To fabricate amplifiers with good linear efficiency,  the component designer can employ processes and 
devices designed specifically for enhanced dynamic range,  or seek circuit topologies which minimize the 
deleterious effects of distortion,  or both.   
 
At WJ Communications,   we have optimized the design of our  GaAs MESFETs for low third-order 
distortion.   This is accomplished by careful adjustment of the channel doping and geometry of the gate and 
gate recess,   ensuring that signal-dependent variations in device transconductance are almost completely 
nullified by the signal dependence of the device output conductance.   The result is a device with very low 
third-order distortion over a wide range of input power,  with little compromise in noise figure,  or 
equivalently extremely wide dynamic range.    
 
 
 
 
 

Figure 18:  Backoff requirement vs. signal (P/A) ratio and 
ACPR requirement,  based on simplified model of clipped 
third-order distortion for CDMA-like signals 
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Table I:  GaAs FET Dynamic Range 
Device Type Output 3rd order 

Intercept (dBm) 
Linear 

efficiency (dB) 
Noise figure 

(dB) 
Spurious-free 

dynamic range (dB)* 
Typical  MESFET 33 12 2.5 86 

WJ AH-1 41 20 2.7 94 
*Spurious-free dynamic range assumes a 1.25 MHz bandwidth (IS-95),  14 dB small signal gain 
 
 
The device structure must be optimized for a given device operating condition.  Most current WJ 
Communications high-dynamic range MESFETs are designed for operation at zero gate bias (Ids = Idss) ,  
and thus require only a single positive voltage supply.    
 
One of the advantages of employing MESFET technology is that the dominant nonlinear elements in the 
device are conductances,  determined by doping concentration and electron mobility.   The distortion 
behavior of MESFET amplifiers is thus relatively insensitive to variations in operating frequency and 
ambient temperature.   However,  MESFET nonlinear modeling is poorly understood in comparison to the 
nonlinear behavior of bipolar junction transistors (BJTs),  so structural optimization is challenging. 
 
To obtain very high gain in a small area,  one may employ bipolar junction transistors instead of FETs.   
The transconductance of a BJT is to a good approximation just  Ic/(kT/q) =  Ic/40 at room temperature.   For 
reasonable current densities,  bipolar transistors can provide much higher transconductance per unit chip 
area than comparable MESFETs.     The combination of high specific gain with a circuit configuration such 
as a Darlington pair allows the use of copious amounts of negative feedback while still preserving 
acceptable overall amplifier gain,  achieving low third-order distortion and good dynamic range.    
Heterostructure bipolar transistors,  with their heavily-doped base regions,  also have very low output 
conductance,  making the output matching design simpler than for a corresponding MESFET circuit.   
Bipolar devices have very low 1/f noise,  making them suitable for low-phase-noise oscillators and low-
frequency applications.      
 
However,  there are some disadvantages to using bipolar transistors in high-frequency,  high-dynamic range 
amplifiers.   The dominant nonlinear elements of a BJT are the transconductance and the parasitic 
capacitances,  which have complex dependences on bias conditions [4].   Bipolar amplifiers require a 
linearizing resistance to remove the exponential dependence of the transconductance on operating current;  
this resistor dissipates a significant added power and reduces headroom available for a given supply 
voltage.  The presence of a significant nonlinear capacitance and the strong frequency dependence of the 
intrinsic gain cause the distortion behavior of BJT circuits to be more frequency-dependent than that of 
their MESFET counterparts (Figure 19).    Bipolar devices often have higher high-frequency noise figures 
than MESFETs,  dominated by junction shot noise.  The use of minority carriers in bipolar devices means 
that their characteristics are also more dependent on temperature than is the case for MESFETs.    Finally,   
MESFETs tend to be more robust than BJT’s when operated at high channel temperatures.   FET channel 
current decreases with increasing channel temperature due to reduced electron mobility,  whereas BJT 
collector current increases with increasing temperature due to increased injection from the emitter.   Bipolar 
devices are thus subject to thermal runaway,  requiring careful design and packaging to ensure thermal 
stability.   
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Conclusion 
 
The need for linearity in digital wireless communications arises primarily from the requirement of minimal 
interference with adjacent channels.   To meet the specifications that result,  the designer should understand 
how spectral regrowth is affected by device nonlinearities measured by intercept point,  clipping measured 
by compressed or saturated output power,  and the properties of the input signal,  often summarized in the 
peak-to-average ratio at a given probability.   Fortunately for the designer,  the distortion properties of any 
signal composed of more than a few uncorrelated binary inputs are close to those of a Gaussian-distributed 
signal.     
 
Device designers have several options to produce the highly linear semiconductor amplifiers required by 
modern communications systems.  GaAs MESFETs and heterostructure bipolar transistors have both 
demonstrated excellent linearity;  the circuit designer should choose the most suitable technology based on 
requirements for gain,  reliability,  and ease of use.   
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Figure 19:  Third-order intercept point vs. operating frequency for 
generally similar HBT and MESFET amplifiers 
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